/* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2000-2001 Qualcomm Incorporated * Copyright (C) 2002-2003 Maxim Krasnyansky * Copyright (C) 2002-2010 Marcel Holtmann * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifndef __BLUETOOTH_H #define __BLUETOOTH_H #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include #ifndef AF_BLUETOOTH #define AF_BLUETOOTH 31 #define PF_BLUETOOTH AF_BLUETOOTH #endif #define BTPROTO_L2CAP 0 #define BTPROTO_HCI 1 #define BTPROTO_SCO 2 #define BTPROTO_RFCOMM 3 #define BTPROTO_BNEP 4 #define BTPROTO_CMTP 5 #define BTPROTO_HIDP 6 #define BTPROTO_AVDTP 7 #define SOL_HCI 0 #define SOL_L2CAP 6 #define SOL_SCO 17 #define SOL_RFCOMM 18 #ifndef SOL_BLUETOOTH #define SOL_BLUETOOTH 274 #endif #define BT_SECURITY 4 struct bt_security { uint8_t level; uint8_t key_size; }; #define BT_SECURITY_SDP 0 #define BT_SECURITY_LOW 1 #define BT_SECURITY_MEDIUM 2 #define BT_SECURITY_HIGH 3 #define BT_DEFER_SETUP 7 #define BT_FLUSHABLE 8 #define BT_FLUSHABLE_OFF 0 #define BT_FLUSHABLE_ON 1 #define BT_POWER 9 struct bt_power { uint8_t force_active; }; #define BT_POWER_FORCE_ACTIVE_OFF 0 #define BT_POWER_FORCE_ACTIVE_ON 1 #define BT_CHANNEL_POLICY 10 /* BR/EDR only (default policy) * AMP controllers cannot be used. * Channel move requests from the remote device are denied. * If the L2CAP channel is currently using AMP, move the channel to BR/EDR. */ #define BT_CHANNEL_POLICY_BREDR_ONLY 0 /* BR/EDR Preferred * Allow use of AMP controllers. * If the L2CAP channel is currently on AMP, move it to BR/EDR. * Channel move requests from the remote device are allowed. */ #define BT_CHANNEL_POLICY_BREDR_PREFERRED 1 /* AMP Preferred * Allow use of AMP controllers * If the L2CAP channel is currently on BR/EDR and AMP controller * resources are available, initiate a channel move to AMP. * Channel move requests from the remote device are allowed. * If the L2CAP socket has not been connected yet, try to create * and configure the channel directly on an AMP controller rather * than BR/EDR. */ #define BT_CHANNEL_POLICY_AMP_PREFERRED 2 #define BT_VOICE 11 struct bt_voice { uint16_t setting; }; #define BT_SNDMTU 12 #define BT_RCVMTU 13 #define BT_VOICE_TRANSPARENT 0x0003 #define BT_VOICE_CVSD_16BIT 0x0060 /* Connection and socket states */ enum { BT_CONNECTED = 1, /* Equal to TCP_ESTABLISHED to make net code happy */ BT_OPEN, BT_BOUND, BT_LISTEN, BT_CONNECT, BT_CONNECT2, BT_CONFIG, BT_DISCONN, BT_CLOSED }; /* Byte order conversions */ #if __BYTE_ORDER == __LITTLE_ENDIAN #define htobs(d) (d) #define htobl(d) (d) #define htobll(d) (d) #define btohs(d) (d) #define btohl(d) (d) #define btohll(d) (d) #elif __BYTE_ORDER == __BIG_ENDIAN #define htobs(d) bswap_16(d) #define htobl(d) bswap_32(d) #define htobll(d) bswap_64(d) #define btohs(d) bswap_16(d) #define btohl(d) bswap_32(d) #define btohll(d) bswap_64(d) #else #error "Unknown byte order" #endif /* Bluetooth unaligned access */ #define bt_get_unaligned(ptr) \ ({ \ struct __attribute__((packed)) { \ typeof(*(ptr)) __v; \ } *__p = (typeof(__p)) (ptr); \ __p->__v; \ }) #define bt_put_unaligned(val, ptr) \ do { \ struct __attribute__((packed)) { \ typeof(*(ptr)) __v; \ } *__p = (typeof(__p)) (ptr); \ __p->__v = (val); \ } while(0) #if __BYTE_ORDER == __LITTLE_ENDIAN static inline uint64_t bt_get_le64(const void *ptr) { return bt_get_unaligned((const uint64_t *) ptr); } static inline uint64_t bt_get_be64(const void *ptr) { return bswap_64(bt_get_unaligned((const uint64_t *) ptr)); } static inline uint32_t bt_get_le32(const void *ptr) { return bt_get_unaligned((const uint32_t *) ptr); } static inline uint32_t bt_get_be32(const void *ptr) { return bswap_32(bt_get_unaligned((const uint32_t *) ptr)); } static inline uint16_t bt_get_le16(const void *ptr) { return bt_get_unaligned((const uint16_t *) ptr); } static inline uint16_t bt_get_be16(const void *ptr) { return bswap_16(bt_get_unaligned((const uint16_t *) ptr)); } static inline void bt_put_le64(uint64_t val, const void *ptr) { bt_put_unaligned(val, (uint64_t *) ptr); } static inline void bt_put_be64(uint64_t val, const void *ptr) { bt_put_unaligned(bswap_64(val), (uint64_t *) ptr); } static inline void bt_put_le32(uint32_t val, const void *ptr) { bt_put_unaligned(val, (uint32_t *) ptr); } static inline void bt_put_be32(uint32_t val, const void *ptr) { bt_put_unaligned(bswap_32(val), (uint32_t *) ptr); } static inline void bt_put_le16(uint16_t val, const void *ptr) { bt_put_unaligned(val, (uint16_t *) ptr); } static inline void bt_put_be16(uint16_t val, const void *ptr) { bt_put_unaligned(bswap_16(val), (uint16_t *) ptr); } #elif __BYTE_ORDER == __BIG_ENDIAN static inline uint64_t bt_get_le64(const void *ptr) { return bswap_64(bt_get_unaligned((const uint64_t *) ptr)); } static inline uint64_t bt_get_be64(const void *ptr) { return bt_get_unaligned((const uint64_t *) ptr); } static inline uint32_t bt_get_le32(const void *ptr) { return bswap_32(bt_get_unaligned((const uint32_t *) ptr)); } static inline uint32_t bt_get_be32(const void *ptr) { return bt_get_unaligned((const uint32_t *) ptr); } static inline uint16_t bt_get_le16(const void *ptr) { return bswap_16(bt_get_unaligned((const uint16_t *) ptr)); } static inline uint16_t bt_get_be16(const void *ptr) { return bt_get_unaligned((const uint16_t *) ptr); } static inline void bt_put_le64(uint64_t val, const void *ptr) { bt_put_unaligned(bswap_64(val), (uint64_t *) ptr); } static inline void bt_put_be64(uint64_t val, const void *ptr) { bt_put_unaligned(val, (uint64_t *) ptr); } static inline void bt_put_le32(uint32_t val, const void *ptr) { bt_put_unaligned(bswap_32(val), (uint32_t *) ptr); } static inline void bt_put_be32(uint32_t val, const void *ptr) { bt_put_unaligned(val, (uint32_t *) ptr); } static inline void bt_put_le16(uint16_t val, const void *ptr) { bt_put_unaligned(bswap_16(val), (uint16_t *) ptr); } static inline void bt_put_be16(uint16_t val, const void *ptr) { bt_put_unaligned(val, (uint16_t *) ptr); } #else #error "Unknown byte order" #endif /* BD Address */ typedef struct { uint8_t b[6]; } __attribute__((packed)) bdaddr_t; /* BD Address type */ #define BDADDR_BREDR 0x00 #define BDADDR_LE_PUBLIC 0x01 #define BDADDR_LE_RANDOM 0x02 #define BDADDR_ANY (&(bdaddr_t) {{0, 0, 0, 0, 0, 0}}) #define BDADDR_ALL (&(bdaddr_t) {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}) #define BDADDR_LOCAL (&(bdaddr_t) {{0, 0, 0, 0xff, 0xff, 0xff}}) /* Copy, swap, convert BD Address */ static inline int bacmp(const bdaddr_t *ba1, const bdaddr_t *ba2) { return memcmp(ba1, ba2, sizeof(bdaddr_t)); } static inline void bacpy(bdaddr_t *dst, const bdaddr_t *src) { memcpy(dst, src, sizeof(bdaddr_t)); } void baswap(bdaddr_t *dst, const bdaddr_t *src); bdaddr_t *strtoba(const char *str); char *batostr(const bdaddr_t *ba); int ba2str(const bdaddr_t *ba, char *str); int str2ba(const char *str, bdaddr_t *ba); int ba2oui(const bdaddr_t *ba, char *oui); int bachk(const char *str); int baprintf(const char *format, ...); int bafprintf(FILE *stream, const char *format, ...); int basprintf(char *str, const char *format, ...); int basnprintf(char *str, size_t size, const char *format, ...); void *bt_malloc(size_t size); void bt_free(void *ptr); int bt_error(uint16_t code); const char *bt_compidtostr(int id); typedef struct { uint8_t data[16]; } uint128_t; #if __BYTE_ORDER == __BIG_ENDIAN #define ntoh64(x) (x) static inline void ntoh128(const uint128_t *src, uint128_t *dst) { memcpy(dst, src, sizeof(uint128_t)); } static inline void btoh128(const uint128_t *src, uint128_t *dst) { int i; for (i = 0; i < 16; i++) dst->data[15 - i] = src->data[i]; } #else static inline uint64_t ntoh64(uint64_t n) { uint64_t h; uint64_t tmp = ntohl(n & 0x00000000ffffffff); h = ntohl(n >> 32); h |= tmp << 32; return h; } static inline void ntoh128(const uint128_t *src, uint128_t *dst) { int i; for (i = 0; i < 16; i++) dst->data[15 - i] = src->data[i]; } static inline void btoh128(const uint128_t *src, uint128_t *dst) { memcpy(dst, src, sizeof(uint128_t)); } #endif #define hton64(x) ntoh64(x) #define hton128(x, y) ntoh128(x, y) #define htob128(x, y) btoh128(x, y) #ifdef __cplusplus } #endif #endif /* __BLUETOOTH_H */