From 14bb08c1df8db9ec6c8a05520d4eee67971235d9 Mon Sep 17 00:00:00 2001 From: Dimitri Sokolyuk Date: Thu, 27 Sep 2018 20:03:23 +0200 Subject: mod tidy --- vendor/golang.org/x/image/math/fixed/fixed.go | 410 -------------------------- 1 file changed, 410 deletions(-) delete mode 100644 vendor/golang.org/x/image/math/fixed/fixed.go (limited to 'vendor/golang.org/x/image/math/fixed/fixed.go') diff --git a/vendor/golang.org/x/image/math/fixed/fixed.go b/vendor/golang.org/x/image/math/fixed/fixed.go deleted file mode 100644 index 3d91663..0000000 --- a/vendor/golang.org/x/image/math/fixed/fixed.go +++ /dev/null @@ -1,410 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package fixed implements fixed-point integer types. -package fixed // import "golang.org/x/image/math/fixed" - -import ( - "fmt" -) - -// TODO: implement fmt.Formatter for %f and %g. - -// I returns the integer value i as an Int26_6. -// -// For example, passing the integer value 2 yields Int26_6(128). -func I(i int) Int26_6 { - return Int26_6(i << 6) -} - -// Int26_6 is a signed 26.6 fixed-point number. -// -// The integer part ranges from -33554432 to 33554431, inclusive. The -// fractional part has 6 bits of precision. -// -// For example, the number one-and-a-quarter is Int26_6(1<<6 + 1<<4). -type Int26_6 int32 - -// String returns a human-readable representation of a 26.6 fixed-point number. -// -// For example, the number one-and-a-quarter becomes "1:16". -func (x Int26_6) String() string { - const shift, mask = 6, 1<<6 - 1 - if x >= 0 { - return fmt.Sprintf("%d:%02d", int32(x>>shift), int32(x&mask)) - } - x = -x - if x >= 0 { - return fmt.Sprintf("-%d:%02d", int32(x>>shift), int32(x&mask)) - } - return "-33554432:00" // The minimum value is -(1<<25). -} - -// Floor returns the greatest integer value less than or equal to x. -// -// Its return type is int, not Int26_6. -func (x Int26_6) Floor() int { return int((x + 0x00) >> 6) } - -// Round returns the nearest integer value to x. Ties are rounded up. -// -// Its return type is int, not Int26_6. -func (x Int26_6) Round() int { return int((x + 0x20) >> 6) } - -// Ceil returns the least integer value greater than or equal to x. -// -// Its return type is int, not Int26_6. -func (x Int26_6) Ceil() int { return int((x + 0x3f) >> 6) } - -// Mul returns x*y in 26.6 fixed-point arithmetic. -func (x Int26_6) Mul(y Int26_6) Int26_6 { - return Int26_6((int64(x)*int64(y) + 1<<5) >> 6) -} - -// Int52_12 is a signed 52.12 fixed-point number. -// -// The integer part ranges from -2251799813685248 to 2251799813685247, -// inclusive. The fractional part has 12 bits of precision. -// -// For example, the number one-and-a-quarter is Int52_12(1<<12 + 1<<10). -type Int52_12 int64 - -// String returns a human-readable representation of a 52.12 fixed-point -// number. -// -// For example, the number one-and-a-quarter becomes "1:1024". -func (x Int52_12) String() string { - const shift, mask = 12, 1<<12 - 1 - if x >= 0 { - return fmt.Sprintf("%d:%04d", int64(x>>shift), int64(x&mask)) - } - x = -x - if x >= 0 { - return fmt.Sprintf("-%d:%04d", int64(x>>shift), int64(x&mask)) - } - return "-2251799813685248:0000" // The minimum value is -(1<<51). -} - -// Floor returns the greatest integer value less than or equal to x. -// -// Its return type is int, not Int52_12. -func (x Int52_12) Floor() int { return int((x + 0x000) >> 12) } - -// Round returns the nearest integer value to x. Ties are rounded up. -// -// Its return type is int, not Int52_12. -func (x Int52_12) Round() int { return int((x + 0x800) >> 12) } - -// Ceil returns the least integer value greater than or equal to x. -// -// Its return type is int, not Int52_12. -func (x Int52_12) Ceil() int { return int((x + 0xfff) >> 12) } - -// Mul returns x*y in 52.12 fixed-point arithmetic. -func (x Int52_12) Mul(y Int52_12) Int52_12 { - const M, N = 52, 12 - lo, hi := muli64(int64(x), int64(y)) - ret := Int52_12(hi<>N) - ret += Int52_12((lo >> (N - 1)) & 1) // Round to nearest, instead of rounding down. - return ret -} - -// muli64 multiplies two int64 values, returning the 128-bit signed integer -// result as two uint64 values. -// -// This implementation is similar to $GOROOT/src/runtime/softfloat64.go's mullu -// function, which is in turn adapted from Hacker's Delight. -func muli64(u, v int64) (lo, hi uint64) { - const ( - s = 32 - mask = 1<> s) - u0 := uint64(u & mask) - v1 := uint64(v >> s) - v0 := uint64(v & mask) - - w0 := u0 * v0 - t := u1*v0 + w0>>s - w1 := t & mask - w2 := uint64(int64(t) >> s) - w1 += u0 * v1 - return uint64(u) * uint64(v), u1*v1 + w2 + uint64(int64(w1)>>s) -} - -// P returns the integer values x and y as a Point26_6. -// -// For example, passing the integer values (2, -3) yields Point26_6{128, -192}. -func P(x, y int) Point26_6 { - return Point26_6{Int26_6(x << 6), Int26_6(y << 6)} -} - -// Point26_6 is a 26.6 fixed-point coordinate pair. -// -// It is analogous to the image.Point type in the standard library. -type Point26_6 struct { - X, Y Int26_6 -} - -// Add returns the vector p+q. -func (p Point26_6) Add(q Point26_6) Point26_6 { - return Point26_6{p.X + q.X, p.Y + q.Y} -} - -// Sub returns the vector p-q. -func (p Point26_6) Sub(q Point26_6) Point26_6 { - return Point26_6{p.X - q.X, p.Y - q.Y} -} - -// Mul returns the vector p*k. -func (p Point26_6) Mul(k Int26_6) Point26_6 { - return Point26_6{p.X * k / 64, p.Y * k / 64} -} - -// Div returns the vector p/k. -func (p Point26_6) Div(k Int26_6) Point26_6 { - return Point26_6{p.X * 64 / k, p.Y * 64 / k} -} - -// In returns whether p is in r. -func (p Point26_6) In(r Rectangle26_6) bool { - return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y -} - -// Point52_12 is a 52.12 fixed-point coordinate pair. -// -// It is analogous to the image.Point type in the standard library. -type Point52_12 struct { - X, Y Int52_12 -} - -// Add returns the vector p+q. -func (p Point52_12) Add(q Point52_12) Point52_12 { - return Point52_12{p.X + q.X, p.Y + q.Y} -} - -// Sub returns the vector p-q. -func (p Point52_12) Sub(q Point52_12) Point52_12 { - return Point52_12{p.X - q.X, p.Y - q.Y} -} - -// Mul returns the vector p*k. -func (p Point52_12) Mul(k Int52_12) Point52_12 { - return Point52_12{p.X * k / 4096, p.Y * k / 4096} -} - -// Div returns the vector p/k. -func (p Point52_12) Div(k Int52_12) Point52_12 { - return Point52_12{p.X * 4096 / k, p.Y * 4096 / k} -} - -// In returns whether p is in r. -func (p Point52_12) In(r Rectangle52_12) bool { - return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y -} - -// R returns the integer values minX, minY, maxX, maxY as a Rectangle26_6. -// -// For example, passing the integer values (0, 1, 2, 3) yields -// Rectangle26_6{Point26_6{0, 64}, Point26_6{128, 192}}. -// -// Like the image.Rect function in the standard library, the returned rectangle -// has minimum and maximum coordinates swapped if necessary so that it is -// well-formed. -func R(minX, minY, maxX, maxY int) Rectangle26_6 { - if minX > maxX { - minX, maxX = maxX, minX - } - if minY > maxY { - minY, maxY = maxY, minY - } - return Rectangle26_6{ - Point26_6{ - Int26_6(minX << 6), - Int26_6(minY << 6), - }, - Point26_6{ - Int26_6(maxX << 6), - Int26_6(maxY << 6), - }, - } -} - -// Rectangle26_6 is a 26.6 fixed-point coordinate rectangle. The Min bound is -// inclusive and the Max bound is exclusive. It is well-formed if Min.X <= -// Max.X and likewise for Y. -// -// It is analogous to the image.Rectangle type in the standard library. -type Rectangle26_6 struct { - Min, Max Point26_6 -} - -// Add returns the rectangle r translated by p. -func (r Rectangle26_6) Add(p Point26_6) Rectangle26_6 { - return Rectangle26_6{ - Point26_6{r.Min.X + p.X, r.Min.Y + p.Y}, - Point26_6{r.Max.X + p.X, r.Max.Y + p.Y}, - } -} - -// Sub returns the rectangle r translated by -p. -func (r Rectangle26_6) Sub(p Point26_6) Rectangle26_6 { - return Rectangle26_6{ - Point26_6{r.Min.X - p.X, r.Min.Y - p.Y}, - Point26_6{r.Max.X - p.X, r.Max.Y - p.Y}, - } -} - -// Intersect returns the largest rectangle contained by both r and s. If the -// two rectangles do not overlap then the zero rectangle will be returned. -func (r Rectangle26_6) Intersect(s Rectangle26_6) Rectangle26_6 { - if r.Min.X < s.Min.X { - r.Min.X = s.Min.X - } - if r.Min.Y < s.Min.Y { - r.Min.Y = s.Min.Y - } - if r.Max.X > s.Max.X { - r.Max.X = s.Max.X - } - if r.Max.Y > s.Max.Y { - r.Max.Y = s.Max.Y - } - // Letting r0 and s0 be the values of r and s at the time that the method - // is called, this next line is equivalent to: - // - // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc } - if r.Empty() { - return Rectangle26_6{} - } - return r -} - -// Union returns the smallest rectangle that contains both r and s. -func (r Rectangle26_6) Union(s Rectangle26_6) Rectangle26_6 { - if r.Empty() { - return s - } - if s.Empty() { - return r - } - if r.Min.X > s.Min.X { - r.Min.X = s.Min.X - } - if r.Min.Y > s.Min.Y { - r.Min.Y = s.Min.Y - } - if r.Max.X < s.Max.X { - r.Max.X = s.Max.X - } - if r.Max.Y < s.Max.Y { - r.Max.Y = s.Max.Y - } - return r -} - -// Empty returns whether the rectangle contains no points. -func (r Rectangle26_6) Empty() bool { - return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y -} - -// In returns whether every point in r is in s. -func (r Rectangle26_6) In(s Rectangle26_6) bool { - if r.Empty() { - return true - } - // Note that r.Max is an exclusive bound for r, so that r.In(s) - // does not require that r.Max.In(s). - return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X && - s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y -} - -// Rectangle52_12 is a 52.12 fixed-point coordinate rectangle. The Min bound is -// inclusive and the Max bound is exclusive. It is well-formed if Min.X <= -// Max.X and likewise for Y. -// -// It is analogous to the image.Rectangle type in the standard library. -type Rectangle52_12 struct { - Min, Max Point52_12 -} - -// Add returns the rectangle r translated by p. -func (r Rectangle52_12) Add(p Point52_12) Rectangle52_12 { - return Rectangle52_12{ - Point52_12{r.Min.X + p.X, r.Min.Y + p.Y}, - Point52_12{r.Max.X + p.X, r.Max.Y + p.Y}, - } -} - -// Sub returns the rectangle r translated by -p. -func (r Rectangle52_12) Sub(p Point52_12) Rectangle52_12 { - return Rectangle52_12{ - Point52_12{r.Min.X - p.X, r.Min.Y - p.Y}, - Point52_12{r.Max.X - p.X, r.Max.Y - p.Y}, - } -} - -// Intersect returns the largest rectangle contained by both r and s. If the -// two rectangles do not overlap then the zero rectangle will be returned. -func (r Rectangle52_12) Intersect(s Rectangle52_12) Rectangle52_12 { - if r.Min.X < s.Min.X { - r.Min.X = s.Min.X - } - if r.Min.Y < s.Min.Y { - r.Min.Y = s.Min.Y - } - if r.Max.X > s.Max.X { - r.Max.X = s.Max.X - } - if r.Max.Y > s.Max.Y { - r.Max.Y = s.Max.Y - } - // Letting r0 and s0 be the values of r and s at the time that the method - // is called, this next line is equivalent to: - // - // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc } - if r.Empty() { - return Rectangle52_12{} - } - return r -} - -// Union returns the smallest rectangle that contains both r and s. -func (r Rectangle52_12) Union(s Rectangle52_12) Rectangle52_12 { - if r.Empty() { - return s - } - if s.Empty() { - return r - } - if r.Min.X > s.Min.X { - r.Min.X = s.Min.X - } - if r.Min.Y > s.Min.Y { - r.Min.Y = s.Min.Y - } - if r.Max.X < s.Max.X { - r.Max.X = s.Max.X - } - if r.Max.Y < s.Max.Y { - r.Max.Y = s.Max.Y - } - return r -} - -// Empty returns whether the rectangle contains no points. -func (r Rectangle52_12) Empty() bool { - return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y -} - -// In returns whether every point in r is in s. -func (r Rectangle52_12) In(s Rectangle52_12) bool { - if r.Empty() { - return true - } - // Note that r.Max is an exclusive bound for r, so that r.In(s) - // does not require that r.Max.In(s). - return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X && - s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y -} -- cgit v1.2.3