
AmForth Documentation
Release 6.5

Matthias Trute

April 30, 2017

CONTENTS

1 User’s Manual 1
1.1 User’s Manual For Linux . 1
1.2 User’s Manual for Windows . 4
1.3 Instructions for Building amforth-5-1 using Atmel Studio 6.1 Components 10

2 FAQ 13
2.1 Where do I find more information? . 13
2.2 How do I start with amforth? . 13
2.3 How do I use amforth interactively? . 13
2.4 What means ?? . 14
2.5 There are no hexfiles in the distribution archive! . 14
2.6 I get no serial prompt! . 14
2.7 What do all the words do? . 15
2.8 I miss a word! . 15
2.9 Can I embed amforth into other programs? . 15
2.10 Can I use code written in C (or any other language) with/in amforth? 15
2.11 What means the GPL for my programs? . 15
2.12 Why should I send you my code? . 15
2.13 Does amforth run on hardware xy? . 15
2.14 What about the fuses? . 15
2.15 What about boot loaders? . 16
2.16 What do I need for linux? . 16
2.17 How do I use Atmel’s assembler with linux? . 16
2.18 What resources are available in my own assembly words? . 16
2.19 What is the release policy? . 16
2.20 How do I send forth code to the system? . 16
2.21 I found a bug . 17

3 Technical Guide 19
3.1 First Steps . 19
3.2 Architecture . 19
3.3 Compiler . 25
3.4 Standard Wordlists . 28
3.5 Hardware . 31
3.6 Source Organization . 43
3.7 Tools . 44

4 Commented Projects 47
4.1 Nodes on a RS485 Bus . 47
4.2 Date/Time to unix time and back . 63

5 Cookbook 71
5.1 Popular Boards . 71
5.2 General Code Examples . 80
5.3 Programming and Debugging . 101

i

5.4 Hardware Modules (AVR) . 128
5.5 Hardware Modules (MSP430) . 148

6 Recognizers 151
6.1 Version 4 . 151
6.2 Outdated . 152
6.3 Namespace RFD . 152

7 Reference Card 153
7.1 General . 153
7.2 Arithmetics (AVR8) . 153
7.3 Compare (AVR8) . 154
7.4 Compiler (AVR8) . 154
7.5 Dictionary (AVR8) . 155
7.6 Environment (AVR8) . 155
7.7 Extended VM (AVR8) . 155
7.8 Interrupt (AVR8) . 156
7.9 Logic (AVR8) . 156
7.10 MCU (AVR8) . 156
7.11 Memory (AVR8) . 156
7.12 Multitasking (AVR8) . 157
7.13 Numeric IO (AVR8) . 157
7.14 Search Order (AVR8) . 157
7.15 Stack (AVR8) . 157
7.16 String (AVR8) . 158
7.17 System (AVR8) . 158
7.18 System Value (AVR8) . 158
7.19 System Variable (AVR8) . 159
7.20 Time (AVR8) . 159
7.21 Tools (AVR8) . 159

8 History 161
8.1 9.7.2015: release 5.9 . 161
8.2 25.3.2015: release 5.8 . 161
8.3 1.2.2015: release 5.7 . 161
8.4 22.12.2014: release 5.6 . 161
8.5 6.10.2014: release 5.5 . 162
8.6 16.8.2014: release 5.4 . 162
8.7 7.5.2013: release 5.3 . 162
8.8 23.12.2013: release 5.2 . 162
8.9 5.4.2013: release 5.1 . 163
8.10 27.12.2012: release 5.0 . 163
8.11 27.7.2012: release 4.9 . 164
8.12 26.3.2012: release 4.8 . 164
8.13 4.2.2012: release 4.7 . 165
8.14 6.10.2011: release 4.6 . 165
8.15 29.6.2011: release 4.5 . 165
8.16 24.5.2011: release 4.4 . 165
8.17 1.5.2011: release 4.3 . 166
8.18 19.9.2010: release 4.2 . 166
8.19 2.9.2010: release 4.1 . 166
8.20 1.7.2010: release 4.0 . 167
8.21 25.5.2010: release 3.9 . 167
8.22 25.4.2010: release 3.8 . 167
8.23 24.1.2010: release 3.7 . 168
8.24 1.10.2009: release 3.6 . 168
8.25 1.9.2009: release 3.5 . 168
8.26 11.4.2009: release 3.4 . 168
8.27 22.2.2009: release 3.3 . 169

ii

8.28 10.1.2009: release 3.2 . 169
8.29 10.11.2008: release 3.1 . 169
8.30 17.10.2008: release 3.0 . 169
8.31 1.8.2008: release 2.9 . 170
8.32 27.6.2008: release 2.8 . 170
8.33 5.4.2007: release 2.7 . 170
8.34 27.1.2008: release 2.6 . 170
8.35 6.12.2007: release 2.5 . 171
8.36 11.10.2007: release 2.4 . 171
8.37 29.7.2007: release 2.3 . 171
8.38 17.6.2007: release 2.2 . 172
8.39 22.5.2007 release 2.1 . 172
8.40 2.5.2007 release 2.0 . 172
8.41 25.4.2007 release 1.9 . 172
8.42 10.4.2007 release 1.8 . 172
8.43 3.4.2007 release 1.7 . 173
8.44 25.3.2007 release 1.6 . 173
8.45 14.3.2007 release 1.5 . 173
8.46 5.3.2007 release 1.4 . 173
8.47 24.2.2007 release 1.3 . 174
8.48 3.2.2007 release 1.2 . 174
8.49 20.1.2007 release 1.1 . 174
8.50 4.1.2007 release 1.0 . 175
8.51 17.12.2006 release 0.9 . 175
8.52 7.12.2006 release 0.8 . 175
8.53 24.11.2006 release 0.7 . 175
8.54 20.11.2006 release 0.6 . 175
8.55 13.11.2006 release 0.5 . 176
8.56 5.11.2006 release 0.4 . 176
8.57 31.10.2006 release 0.3 . 176
8.58 27.10.2006 release 0.2 . 176
8.59 16.10.2006 release 0.1 . 176

iii

iv

CHAPTER

ONE

USER’S MANUAL

User’s Manual For Linux

Initial Setup

This guide makes a few assumtions. Your linux should be a fairly recent linux distribution. For this document an
Ubuntu 12.04 LTS is used, others should work in a similiar way. Most of the following is for AVR8. The MSP430
is only for the TI Launchpad and needs no further configuration (yet).

First you’ll have to install some packages with the package manager:

• wine (any version, only for AVR8

• naken_asm (any version, only for MSP430)

• ant or make (any version)

• avrdude (only for AVR8)

• mspdebug (any version, only for MSP430)

They may need quite a lot more packages especially wine, install all of them.

Next download the amforth package and un-tar (or unzip) it into a new, empty folder:

> pwd
.../amforth
> ls
> tar xvfz amforth-x.y.tgz
.. lots of files
> ls
appl common avr8 msp430 doc examples lib LICENSE.txt readme.txt
tools
>

Now you need to download the Atmel-Assembler package from the same source as you downloaded the amforth
sources. Extract in the in the amforth base directory. This will create a subdirectory avr8/Atmel that contains
the assembler (as an exe file) and the necessary include files.

> ls avr8/Atmel
avrasm2.exe Appnotes2/
>

Testing

To test if the installation is complete, change into the directory appl/template. There run either make or ant
with the target name template.hex to test the assembler setup.

1

AmForth Documentation, Release 6.5

> make template.hex
wine ../../avr8/Atmel/avrasm2.exe -I ../../avr8(Atmel/Appnotes2

-I ../../avr8/devices/atmega1284p -I ../../avr8 -I ../../common
-I ../../core/devices/atmega1284p -fI
-v0 -e template.eep.hex -l template.lst template.asm

>

Ant works similiar, note the warning at startup, it can safely ignored:

> ant template.hex
Unable to locate tools.jar. Expected to find it in
/usr/lib/jvm/java-6-openjdk-amd64/lib/tools.jar
Buildfile:amforth/appl/template/build.xml

template.hex:
[echo] Producing Hexfiles for atmega128

BUILD SUCCESSFUL
Total time: 4 seconds
>

After this step, there should be a number of new files in the directory:

> ls
build.xml dict_appl.inc template.asm
template.hex template.map dict_appl_core.inc
makefile template.eep.hex template.lst words

If something went wrong, read the error messages, fix them and repeat this step until all is well.

Create Your Project

If everything works fine, it is now possible to start your own project. This as simple as making a copy of the
template directory and editing a few files there.

> pwd
... amforth/appl
> cp -r template my
> cd my
>

Now edit the files template.asm and makefile (or build.xml if you use ant). The file template.asm
has a lot of settings, to get a quick start only the lines

.equ BAUD = 9600

.include "drivers/usart_0.asm"

may need to be changed. The baud number should be obvious. The line usart_x.asm defines the usart port of
the controller on which the command prompt will be available. There are only real usart ports available, no USB
devices (this may change in future releases..)

In the makefile find the lines

set the fuses according to your MCU
LFUSE=0xnn
HFUSE=0xnn
some MCU have this one, see write-fuses target below
EFUSE=0xnn

resp. the build.xml for ant:

<target name="p1284-8.fuses" description="Set fuses for P1284-8">
<echo>Writing fuses</echo>
<avrdude-3fuses

2 Chapter 1. User’s Manual

AmForth Documentation, Release 6.5

type="${programmer}"
mcu="${mcu}"
efuse="0xff"
hfuse="0x99"
lfuse="0xc6"

/>
</target>

and change the fuses to meet you hardware settings. Be careful with these numbers, they can potentially corrupt
your controller cpu beyond repair.

The next essential setting is the controller itself

the MCU should be identical to the device
MCU=atmega1284p

in the build.xml find and change all occurances that look like

mcu="atmega1284p"

with the proper name. The mcu names are taken verbatim as file names in the avr8/Atmel/Appnotes2
directory and as directory names in the avr8/devices directory. Case is significant (should be almost always
lower case).

With these changes, rebuild the hex files as described above.

Program The Controller

Hardware and System Setup

The last and final step is to transfer the hex files to the controller. The build tools use the program avrdude. To
get the hex files to the controller a special hardware called programmer is needed. There are many different ones
available, ranging from simple parallelport tools like the STK200 to expensive tools like the Atmel JTAG ICE
MK2. Dont start trying to use exotic tools like ponyser or other self-made el-cheapo tools unless you know what
you’re doing.

The Atmel tools AVR ISP MK2 and Dragon are not that expensive and work with the USB port of your computer.
Linux needs a file named /etc/udev/rules.d/99-atmel.rules to make them accessible for users:

Atmel AVR ISP mkII
SUBSYSTEM=="usb", ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="2104", GROUP="users", MODE="0660"
usbprog bootloader
ATTRS{idVendor}=="1781", ATTRS{idProduct}=="0c62", GROUP="users", MODE="0660"
USBasp programmer
ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="05dc", GROUP="users", MODE="0660"
USBtiny programmer
ATTRS{idVendor}=="1781", ATTRS{idProduct}=="0c9f", GROUP="users", MODE="0660"

Note, that the correct GROUP name should include one of the groups your linux account is a member of:

> id
uid=1000(user) gid=1000(user) groups=1000(user),4(adm),24(cdrom),

27(sudo),30(dip),46(plugdev),109(lpadmin),124(sambashare),125(libvirtd)

Here the GROUP name “users” would not work! But “user” or “plugdev” would do. If you do not have a setup
like this, only root can access the programmer. If you want to use the parallelport programmer STK200, your
account should be a member of the “lp” group (check with ls -l /dev/parport*).

Any changes to the rules file are detected almost immediately, there should be no reason to restart any linux
program.

1.1. User’s Manual For Linux 3

AmForth Documentation, Release 6.5

Project Setup

If your hardware setup is finished, you need to edit the makefile or build.xml to reflect the settings. In the
makefile find and edit the lines

USB=-c avr911 -P /dev/ttyUSB3
PP=-c stk200 -P /dev/parport0
JTAG=-c jtag2 -P /dev/ttyUSB2
BURNER=$(USB)

The build.xml is different. This file uses a property file named programmer.properties to set the
name and the port of the programmer hardware. The build.xml file uses a substring from the label to define
the programmer. If you want to use e.g. the AVR Dragon as the programmer, just use the name “dragon” as
programmer idenifier in your build.xml. The ant utility will expand this to “avr.programmer.<label>port”
for the -P parameter and “avr.programmer.<label>” to the -c parameter to generate the right command line for
avrdude from the property file.

Serial programmers may be difficult while getting the right port name if using RS232-to-USB converters. The
mapping may change over time (e.g. every reboot or USB bus reset).

If everything goes ok, the final command make template should re-generate the hex files and transfer them to
the controller. The default program output should be verbose enough to track any error messages.

User’s Manual for Windows

by Karl Lunt for amforth v4.2 (updated for v6.1)

Document contributed to the amforth project on SourceForge.net.

Introduction

This manual describes the amforth programming language and provides details on how to customize the standard
release for use on your target platform. This document focuses on developing amforth applications in the Windows
environment, using Atmel’s freeware AVRStudio4. For information on developing amforth applications in the
Linux/Unix environment, consult the Web.

amforth is a variant of the ans94 Forth language, designed for the AVR ATmega family of microcontrollers
(MCUs). amforth was developed and maintained by Matthias Trute; the amforth project is hosted and maintained
on SourceForge.net (http://sourceforge.net/projects/amforth).

You create your amforth application by creating a custom template file, (optionally) modifying some of the files
included in the distribution set, assembling them with AVRStudio4, then moving the resulting object file into flash
in the target hardware. Your amforth application resides in flash, using very little RAM or EEPROM.

amforth is fully interactive. You can connect your target hardware to a serial port on your host PC, run a comm
program such as Hyperterm, and develop additional Forth words and applications on the target. Each word you
create interactively is also stored in flash and is available following reset or power-cycle of the target. You can
select one of your amforth words to be the boot task, which will run automatically on the next reset or power-cycle.
You can also write interrupt service routines (ISRs) in amforth for handling low-level, time-critical events.

This manual assumes familiarity with Atmel’s AVRStudio4 development suite (Windows OS);
some knowledge of AVR assembly language programming is helpful but not necessary for ba-
sic use of the amforth language. You can download the free AVRStudio4 suite from Atmel
(http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725). You can use version 4.2 or higher;
note that you need to fill out a fairly simple registration page to complete the download.

This manual also assumes a working knowledge of the Forth programming language. If you are new to Forth, or
if you need a quick refresher or a reference page, you can find a full Web version of Leo Brodie’s marvelous book,
“Starting Forth,” online at http://home.iae.nl/users/mhx/sf.html.

4 Chapter 1. User’s Manual

http://sourceforge.net/projects/amforth
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
http://home.iae.nl/users/mhx/sf.html

AmForth Documentation, Release 6.5

About this document

I created this document to support Matthias’ work on amforth. He has designed an excellent Forth that I enjoy
using, but I thought newcomers to amforth could use a bit more detailed explanation on setting up an application.
As my contribution to his amforth project, I’m providing this user’s manual.

This document was written using OpenOffice version 3.2.0. You can download a copy of OpenOffice at the
project’s website: www.openoffice.org

I have contributed this document to Matthias for inclusion in his project, with the hope that others will edit and
expand this text, to make amforth even better. If you modify this document, please include this section (with
suitable additions) and include my name in the list of contributors.

Karl Lunt, Bothell, WA USA

A quick look inside amforth

amforth v4.2 is available as a single downloadable file (amforth-4.2.zip). Download this file into your
working folder (I’ll use c:\projects\amforth-4.2 throughout this document) and unzip them, preserving
the subdirectory structure. You should end up with the following subdirectory layout:

c:\projects\amforth-x.y\ <-- main directory, holds your project files
\appl <-- holds amforth systems for various MCUs
\common <-- holds common source for amforth primitives
\avr8 <-- holds sources specific for avr atmega
\msp430 <-- holds sources specific for msp430
\doc <-- holds amforth documentation
\examples <-- holds small projects written in amforth
\lib <-- holds libraries of Forth source files
\tools <-- holds amforth support tools (pd2amforth)

You will develop your custom applications by creating simple assembly language source files in the main directory,
assembling your source files and the amforth source files with AVRStudio4, then downloading the resulting .hex
and .eep files into your target with AVRStudio4.

Note that although you will be creating assembly language source files, the files will be little more than a few macro
invocations. Generally, you will not need to know any AVR assembly language to develop your applications.

The following sections describe the various subdirectories and files found in the initial installation of amforth.

*\words subdirectory

The *\words subdirectory in the avr8, msp430 and common directory hold a large collection of amforth
words, each defined in a separate .asm file. Each file in this subdirectory is a complete word definition, ready to
assemble into the final application. For example, here is the entire contents of equal.asm, the source file for
the word =, which compares two values on the top of the stack and leaves behind a flag that is TRUE if the values
match or FALSE if they don’t.

; (n1 n2 -- flag) Compare
; R(--)
; compares two values
VE_EQUAL:

.dw $ff01

.db "=",0

.dw VE_HEAD

.set VE_HEAD = VE_EQUAL
XT_EQUAL:

.dw PFA_EQUAL
PFA_EQUAL:

ld temp2, Y+
ld temp3, Y+
cp tosl, temp2

1.2. User’s Manual for Windows 5

AmForth Documentation, Release 6.5

cpc tosh, temp3
PFA_EQUALDONE:

brne PFA_ZERO1
rjmp PFA_TRUE1

This source file gives an excellent view of the layout for each amforth word. It isn’t necessary that you understand
how a word is laid out inside the dictionary in order to use amforth. However, if you ever need to define your own
amforth words, you will need to follow the layout shown here to make sure your words properly integrate into the
dictionary.

*\devices subdirectory

The *\devices subdirectories hold several folders, each defining a target MCU. For each target MCU defined,
the associated folder holds four files..

The device.asm file is intended to be included as part of your application, and provides assembly language def-
initions for MCU-specific parameters, such as where RAM starts, the number and layout of the interrupt vectors,
and where high flash memory starts.

The <target>.frt file contains Forth source defining MCU-specific parameters, such as IO register names
and addresses. You can use this file when working in Forth on your target system; it is not needed when building
an amforth system in AVRStudio4.

The device.inc file contains assembler source and is intended to be included as part of any amforth applica-
tions you build for the target device. This file creates Forth words in your dictionary that provide access to the
MCU registers on your target.

(Comments on device.py file are needed.)

If you need to develop support files for a different Atmel MCU, you can copy the existing files for a similar device
and use these copies as a starting point for your efforts. Rename the files to match the target MCU, then refer to
the appropriate Atmel reference manual to determine the proper values for the various registers and parameters.
Where possible, ensure that the assembly language names for the ports match those in the existing .asm file. If
the names do not match, or if you need to add new names to provide support for a new subsystem (such as the
CANBus ports on an AT90CAN128), you may need to edit one or more existing amforth source files.

(Add details on how the device.py file is generated.)

*\amforth.asm

amforth.asm in the avr8 and msp430 contains a small amount of assembly language source that: * defines
the Forth inner interpreter, * declares the starting address of the Forth kernel, * allocates the memory for the final
system, * sets up the small area of EEPROM used by the Forth system, * declares the interrupt service routine
(ISR) support, * adds the words to be assembled into low flash memory (dict_appl.inc), * adds the words to
be assembled into high flash memory (dict_appl_core..inc)

The amforth.asm included in your original download is essentially complete, in that when assembled it will
create most of an amforth system. However, key information about the target hardware is missing and must be
supplied by you in what is known as a template file. Details on what this template file contains and how you use
the template file to describe your target hardware are contained in a later section.

Note that amforth.asm refers to a turnkey application (see XT_APPLTURNKEY in the .eseg segment). This
execution token is assumed to be an amforth word defined somewhere in your application. The default turnkey
application, defined in the file applturnkey.asm, provides a typical Forth interactive environment. You can
customize applturnkey.asm as needed; see the section below on applturnkey.asm.

Developing your own amforth system

The following sections describe the files you need to create for building your own amforth system. In general,
these are the only files you will need to edit during development. You can often find suitable files already in the

6 Chapter 1. User’s Manual

AmForth Documentation, Release 6.5

distribution that can serve as starting points for these files; just copy and edit them to make your own files.

dict_appl.inc

The file dict_appl.inc is created by you and contains those amforth words that you want to add to your
application above and beyond the words added by default.

You create your own dict_appl.inc file using a standard text editor, such as AVRStudio4’s text editor. Here
is a simple dict_appl.inc file that I use for creating a typical amforth development system. It provides words
for printing unsigned numbers, listing the dictionary, and displaying parts of memory.

Here is the dict_appl.inc file I created for my sample amforth system.

; this dictionary contains optional words
; they may be moved to the core dictionary if needed

.include "applturnkey.asm"

; optionally
.include "dict/compiler2.inc"

Note that none of the files in the core/dict directory are included. This is done automatically depending on the
free flash space. The only exception which can be added manually is the file dict/compiler2.inc. Tnis file
is automatically included for devices with 8KB NRWW flash memory. It is possible to add multiple .include
statements, the file will only be included once.

You are free to include whatever words from the words/ folder you want in your application. Note that if you
accidentally include a duplicate word, assembling the resulting application will generate an error; you will need
to edit out the duplicate word and reassemble.

dict_appl_core.inc

The file dict_appl.inc is created by you and contains those amforth words that you want to add to your
application above and beyond the words added by dict_minimum.inc and dict_core.inc. The difference
between this file and dict_appl.inc above is the words in this file will be written to high flash (the NRWW
or bootloader section).

Because of the limited amount of space in the NRWW sections of most ATmega devices, you will want to limit
the words in this file to those absolutely required to support amforth. In general, these are words that modify flash,
such as istore.asm. Below is the dict_appl_core.inc file for my sample amforth system.

.include "words/estore.asm"

.include "words/efetch.asm"

.include "words/istore.asm"

.include "words/istore_nrww.asm"

.include "words/ifetch.asm"

This file looks almost the same for all current atmega devices. You’ll need to change some entries only for devices
from the atxmega line and some bigger atmega types. There are examples in the appl directory for this. If you
accidentally include words already included by other segments of the amforth system, you will get assembler
errors for the duplicates; just remove the duplicates from your dict_appl_core.inc file.

applturnkey.asm

This file is created by you and contains the assembly language source for a turnkey application, as called out in
the file amforth.asm (see appropriate section above).

The file applturnkey.asm usually contains amforth words, written in assembly language, in the form shown
in the words/ subdirectory description above.

1.2. User’s Manual for Windows 7

AmForth Documentation, Release 6.5

The following sample applturnkey.asm file shows the default turnkey application. This application is suitable
for most amforth systems and should be included when you build your system. Here is the applturnkey.asm
file for my sample amforth system.

; (--) System
; R(--)
; application specific turnkey action
VE_APPLTURNKEY:

.dw $ff0b

.db "applturnkey",0

.dw VE_HEAD

.set VE_HEAD = VE_APPLTURNKEY
XT_APPLTURNKEY:

.dw DO_COLON
PFA_APPLTURNKEY:

.dw XT_INITUSER

.dw XT_USART

.dw XT_INTON

.dw XT_CR

.dw XT_CR

.dw XT_VER

.dw XT_CR

.dw XT_SLITERAL

.dw 22

.db "Karl's amForth system "

.dw XT_ITYPE

.dw XT_EXIT

The above simple application initializes the user area and USART0, displays amforth’s version information on the
serial terminal, displays an extra message proclaiming this as my amforth system, then exits to the main amforth
shell.

Note that my custom message ends with a space. I did this so the message had an even number of letters. If the
string length is odd, the assembler reports a warning that it had to add an zero-byte to pad out an even number of
bytes. (I could have also used the ,0 technique shown in the declaration of the applturnkey string at the top of the
file.)

The template file

You define the characteristics of your target hardware and your application in a template file. The template file is
an assembly language source file you create with a standard ASCII text editor, such as AVRStudio4’s text editor.
Although this is called an assembly language source file, you will typically not write any true assembly language
instructions. Instead, the contents of your template file will largely consist of .include and .equ statements.

Here is the template file, myproj.asm, for defining my sample amforth system running on an Atmega328P
MCU with a clock frequency of 16 MHz.
;
; myproj.asm a simple AVRStudio4 assembly-language project for amforth
;
;
; The order of the entries (esp the include order) must not be
; changed since it is very important that the settings are in the
; right order
;
; first is to include macros and default settings from the amforth
; directory.
.include "preamble.inc"

; amforth needs two essential parameters
; cpu clock in hertz, 1MHz is factory default
.equ F_CPU = 16000000

8 Chapter 1. User’s Manual

AmForth Documentation, Release 6.5

; and the actual usart port.
.include "drivers/usart_0.asm"

; include the whole source tree.
.include "amforth.asm"

Your template file should declare a key equate required by amforth. The equate F_CPU defines the oscillator
frequency, in Hertz, of your target hardware and is expressed as a long integer. The example shown above shows
the target system uses an 16 MHz clock; F_CPU is declared as 16000000.

Next, your template file should include the assembly source file supporting the USART you intend to use as a
console on your target hardware. The example above uses USART0 and includes the appropriate device include
file.

In general, the remaining equate values (.equ and .set) in the template file will be calculated automatically, based
on previously defined values in the Atmel definition files for the various MCUs.

This completes the custom portion of the template file. All that remains is the final include statement, which
basically adds all of the words that make up the standard amforth system. Everything you would need to do for
the majority of amforth systems can be done with the statements available to you in your template file.

Setting up AVRStudio4

Begin by creating a new assembly-language project in AVRStudio4. For my sample, I named this project myproj
and created it in the c:\projects\amforth-x.y folder.

I then created the four above files in my project folder (the folder holding myproj.aps).

Next, I added the path to the core\ folder to my project. To do this, click on Project/Assembler Options and
locate the entry for Additional include path. Enter in this field the full path to the corefolder; in my case, this path
is C:\projects\amforth-4.2\core.

This completes setup in AVRStudio4. Pressing F7 assembles the source files and leaves behind two object files.
The file myproj.hex contains the flash contents for my amforth system and the file myproj.eep holds the
EEPROM values needed at startup.

I then hooked my programming pod (an AVRISP mkII) to the target board and applied power. I first made sure that
the device’s fuses were properly set. In particular, I checked that the bootloader area was set to the maximum (2048
words for the ATmega328P), the EESAVE fuse was checked, and the fuse for BOOTRST (jump to bootloader on
reset) was NOT checked.

Finally, I downloaded the EEPROM file to the target, followed by downloading the flash file. When I reset the
target, the Hyperterm window hooked to the target’s serial port showed the expected amforth announcement. My
amforth system was up and running!

What could go wrong?

When you build a properly created amforth system, you should not get any errors or warnings. If the assembler
complains about not finding included files, double-check the layout of your amforth folder; it should match what
I’ve described at the beginning of this manual. Additionally, make sure you entered the path to your core\ folder
correctly in the Additional include path box when you set up the project’s properties.

If the project builds properly but does not provide characters to your serial port when you download your code to
the target, double-check that your Hyperterm settings match those in your template file (myproj.asm above).
Also confirm that you got the MCU frequency correct in your template file. Also double-check that you put the
correct hard-coded paths in your template file and in your dict_appl.inc file. Also make sure you download
BOTH the .hex and the .eep files for your project, and that you have the EESAVE fuse on your device checked.

1.2. User’s Manual for Windows 9

AmForth Documentation, Release 6.5

An alternative AVRStudio4 setup

The above method uses two hard-coded paths in your source files. This can cause problems if you later try to
change processors; it’s easy to forget to change one of the hard-coded paths and it can take time to track down the
error.

As an alternative, you can go to Project/Assembler Options and remove the path you added in the Additional
include path field. Edit the Additional parameters field to include the following text, all entered on a single line:

-I C:\projects\amforth-x.y\avr8\devices\atmega328p -I C:\projects\amforth-x.y\avr8 -I C:\projects\amforth-x.y\common

Note that the above entry is for my project; adjust as needed for your file paths and target MCU. Be sure to include
the single space after each -I as shown!

Revision History

Version Author Notes
4.2.0 Karl Lunt Extensive changes to track amforth v4.2.
4.2.1 Karl Lunt Minor changes to introduction
4.2.2 Matthias Trute Reformatted with ReST
4.2.3 Matthias Trute Update for include file changes
4.2.4 Matthias Trute Update for include file changes

Instructions for Building amforth-5-1 using Atmel Studio 6.1 Com-
ponents

Author: Craig Lindley Date: November, 2013

Motivation

Building AmForth requires a compatible assembler. Atmel Studio 6.1 for Windows includes avrasm2.exe which
works great for this process but using Atmel Studio is overkill in my opinion. On my Mac Atmel Studio 6.1 takes
forever to load and execute (using the Parallel’s Desktop) plus it crashes half the time when I try to make changes
to my amforth project’s configuration.

I wanted to be able to quickly make changes to AmForth and turn around new hex and eep files for downloading
into an Arduino Uno. Note: the technique I discuss here can be used for any Atmel target hardware, not just an
Arduino Uno.

Prerequisites

1. Download and install the and installation of the free version of Atmel Studio 6.1 on a Windows computer
OR download and unpack the Atmel Assembler package from the amforth file download serice pages.

2. Being comfortable running a command prompt in the Windows environment

Process

1. Create a project directory into which we are going to copy a bunch of files. I chose c:\amforth for my
project directory.

2. Uncompress and un tar the amforth-5.1 distribution file (amforth-5.3.tar.gz) into the project direc-
tory

10 Chapter 1. User’s Manual

AmForth Documentation, Release 6.5

3. If you installed the Atmel Studio locate and copy the avrasm2.exe and the complete in-
clude directory from e.g. c:\Program Files\Atmel\Atmel Toolchain\AVR
Assembler\Native\2.1.39.1005\avrassembler into the project directory

4. Go into the amforth-5.1\appl\arduino directory of the distribution and copy uno.asm,
dict_appl_code.inc, dict_appl.inc and the words directory into the project directory.

5. Go into the amforth-5.1\avr8\devices directory and find the directory named with the proces-
sor you are going to use (in my case atmega328p) and from that directory copy device.asm and
device.inc into the project directory.

6. Create a bat file in the project directory with the following content:

REM batch file for assembling amforth on windows
avrasm2.exe -fI -o uno.hex -e uno.eep -l uno.lst -I .\ -I amforth-5.1\common -I amforth-5.1\avr8 -I include -v0 uno.asm

I named my bat file make.bat.

When you have completed these steps you should have a directory structure as follows:

c:\amforth - your project directory
amforth-5.3 - the uncompressed and untarred amforth-5.1 distribution
appl
avr8
common
msp430
doc
. . .
include - copied from c:\Program Files\Ateml\AtmelToolchain\AVR Assembler\Native\2.1.39.1005\avrassembler
words
applturnkey.asm
avrasm2.exe - copied from c:\Program Files\Ateml\AtmelToolchain\AVR Assembler\Native\2.1.39.1005\avrassembler
device.asm
device.inc
dict_appl.inc
dict_appl_core.inc
make.bat

If all is well, change directory to your project directory and type make from a command prompt. In less than a
second you will have the new amforth files (hex file and eep file) for programming into you target hardware. You
could now uninstall Atmel Studio if you want as it is no longer required.

Making changes to amforth is now very easy and turn around is very fast.

1.3. Instructions for Building amforth-5-1 using Atmel Studio 6.1 Components 11

AmForth Documentation, Release 6.5

12 Chapter 1. User’s Manual

CHAPTER

TWO

FAQ

Where do I find more information?

There are 2 documentation files: a User’s Manual written by Karl Lunt and a more Technical Guide.

A lot of information is in the cookbook. There you can find many small recipes on a specific topic. Most of them
can be combined.

More can be found in the Maillinglist archive

How do I start with amforth?

First: You will have to build your own amforth first. To do this you really want to make copy of the
appl/template directory and edit the files in it to fit your environment: controller type, cpu frequency, serial
port settings etc. The files are well documented. Once the assembler produces two hex files and no errors (warn-
ings should not come up either) you can proceed. If you are using the Atmel studio, make sure that the project
settings include the generation of the eep files. This settings may be disabled by default.

Second you need a programmer to transfer the hex files you generated to the controller. The only programmers
that can be used are those that can work on bare (micro controller) systems: ISP (e.g. the Atmel AVRISPmk2 or
stk200 or ponyser), JTAG (e.g. the AVR Dragon), High Voltage programming (rarely used) or DebugWire (same:
rarely used). Programming tools that relies on a boot loader on the micro-controller itself can not load amforth
(the reasons are explained in the Technical Guide.

The program to talk with the programmer is avrdude. It is a swiss army knife like tool, that works for almost
all devices on all operating systems (Linux, Windows, MacOS and few more). The Makefiles / ANT files use it.
Other programs (just like the famous Atmel Studio) are never used by me, you are on your own.

After you transferred “burned” both hex files (one for the flash memory, one for the EEPROM memory), you can
begin working with amforth on the serial connection.

How do I use amforth interactively?

At the command prompt you can enter any command and can explore the controller. To simply add two numbers
just do the following:

> 24 42 + .
66 ok
>

To get the content of an IO register just use the memory mapped address (the example reads the 16bit return stack
pointer which the just the normal mcu stack pointer):

13

http://sourceforge.net/mailarchive/forum.php?forum_name=amforth-devel
http://amforth.svn.sourceforge.net/viewvc/amforth/trunk/appl/template/

AmForth Documentation, Release 6.5

> $5d @ .
1101 ok
> rp@ .
1101 ok
>

8bit registers just use the c@ command instead of the @. Writing to any address is just as simple:

> 17 pad !
ok
> pad @ .
17 ok
>

What means ??

At the terminal prompt the ?? means that an error occured. If it is displayed, the normal interpreter command
prompt got active. Interrupts will continue to work. It is followed by at least one number, if the error occures
during a commoand session a second number may appear.

The first number is the error code. Technically it is a negative number. The numbers are in fact an exception code,
that is not handled. The standard systems uses a few of them.

The second number is the position in the current input line at which the error has been detected. E.g. when the
error code is -13 (not found), the second number points to the last character of the word that could not be found.

There are no hexfiles in the distribution archive!

Hex-files are very specific to the hardware, even the change of the oscillator frequency needs a rebuild. And every
processor wants its own settings. There would be far too many different hex-files. For some targets a hex-file is
provided (e.g AVR Butterfly).

I get no serial prompt!

You need to program two hex files, one for the flash memory and one for the EEPROM. The makefiles do that
already automatically.

Next check are the frequency settings. Atmegas need a configuration (fuse setting) to use an external clock
source. By default they run with an unstabilized 1MHz internal clock source, which is not well suited for serial
communication. Check the datasheet of your controller to find the correct fuse settings, they are different for
different atemgas and very sensitive, be absolutly careful! Rebuilt the hex files with the proper frequency (F_CPU
setting).

Finally check the terminal settings: For the AVR devices the default settings come from the file preamble.inc
and are set to 38400 8N1, no flow control. It is possible and the preferred way to overwrite these settings in you
application setup file. Some example application do so. The MSP430 defaults (9600 8N1) are hard coded inside
the device settings and cannot be changed easiely (currently).

Finally check the hardware. You may add a LED (or a scope) to the TX pin to check wether the controller sends
out the boot message upon reset. Plug off all programmers (they may keep the RESET pin).

Check the mailing list archive for other hints or (finally) ask there for help.

14 Chapter 2. FAQ

AmForth Documentation, Release 6.5

What do all the words do?

amforth tries to implement the Forth 2012 dialect of forth. The last public version is available at (e.g.) Taygeta
Archive

I miss a word!

The default configuration includes most but not all words. A few words are written in assembly and can be found
in the platform/words directory. The file names usually reflect the forth names. If you need on of those words,
you’ll have to edit your project files and recompile amforth. A lot more words are available as forth code. To use
them you only need to send the forth code to the controller. The Amforth-Shell may become your friend for that.

Can I embed amforth into other programs?

Embedding amforth into other programs (e.g. written in C) is almost impossible. Amforth is designed to run
stand-alone and does not follow any conventions that may be used on other systems.

Can I use code written in C (or any other language) with/in amforth?

Short answer: no.

What means the GPL for my programs?

As long as you don’t use your (Forth) program with amforth: Nothing. It’s your code and you decide everything.

If you combine your code with amforth, the result is GPL licensed, no matter what you think about it. That means
your users (sometimes called customers or business partners) have access to your code together with amforth
under the GPL. It doesn’t matter whether you use the GPLv2 (older versions of amforth) or newer ones. I kindly
ask these users to send me a copy.

Why should I send you my code?

Really simple: I want to improve amforth. The best way to do so is to study code using it. That includes ports of
modules to other Forth’s.

Does amforth run on hardware xy?

amforth is targeted to Atmel AVR Atmega controllers. It does not and never will run on Attiny controllers or
on completely different architectures like PIC or 8051 etc. Work is currently under way to port to the Texas
Instruments MSP430.

What about the fuses?

Just set them to the factory defaults and adjust the oscillator settings only. amforth uses the self programming
capabilities so if any boot loader works, amforth should do so. Make sure that the boot loader size is as large as
the NRWW flash size, otherwise the flash write operation may fail silently and crash your system completely.

2.7. What do all the words do? 15

http://www.taygeta.com/forth/dpans.htm
http://www.taygeta.com/forth/dpans.htm

AmForth Documentation, Release 6.5

What about boot loaders?

amforth overwrites them, they are no longer existent. And this can only be changed for boot loaders with an
application usable API to use the flash self programming feature. There are none currently available. With such
an API the only word that’s need to be rewritten is !i.

What do I need for linux?

The linux assembler avra comes without the controller definition files. They need to copied from the Atmel AVR
Studio. Please use the version 1 of the files from the AvrAssembler/appnotes directory. The Makefiles in
the applications expect the files in the directory ~/lib/avra. Please note that these files are horribly outdated
and do not cover all controller types. For those controllers you need the Atmel AVR Assembler version2. See next
note.

How do I use Atmel’s assembler with linux?

First you need a working setup of a recent wine. Then put the avrasm2.exe and the Appnotes directory
somewhere on your system. Then edit the makefile to look similiar too:

AVRDUDE=/usr/local/bin/avrdude

PP=-c stk200 -P /dev/parport0
JTAG=-c jtag1 -P /dev/ttyUSB2

AVRASM=wine ~/projects/avr/AvrAssembler2/avrasm2.exe
AVRASMOPTS=-fI -I ~/projects/avr/AvrAssembler2/Appnotes -e $@.eep -l $@.lst -m $@.map

p8.hex: *.asm words/*.asm devices/*.asm
$(AVRASM) $(AVRASMOPTS) p8.asm

p8: p8.hex
$(AVRDUDE) $(PP) -p atmega644 -e -U flash:w:p8.hex:i -U eeprom:w:p8.hex.eep:i

please note that the file names are slightly different from the avra generated code. Good luck.

What resources are available in my own assembly words?

You can use any resource if you take care. There are some things you need to obey: Never use the T flag in the
machine status register SREG. Only the CPU registers named temp0..temp5 are save to use without the need of
restoration. Any other register change may be harmful.

What is the release policy?

Releases are made when there are ready. Usually the list of changes is limited to only a few things. Every release
is considered stable and ready for production use. The version number gets increased by 0.1 with every release.
That means, that a .0 release is nothing special.

How do I send forth code to the system?

Basically send them as ascii text via the terminal line. A command line like:

16 Chapter 2. FAQ

AmForth Documentation, Release 6.5

> ascii-xfr -s -c 10 -l 100 devices/atmega32.frt > /dev/ttyS0

can be used. amforth does not currently support any kind of flow control. Any transfer has to be slow enough to
not overrun the buffers. A more sophisticated approach is described in Shells And Upload

I found a bug

Too bad. Please send all information to the Mailling List

2.21. I found a bug 17

mailto:amforth-devel@lists.sourceforge.net

AmForth Documentation, Release 6.5

18 Chapter 2. FAQ

CHAPTER

THREE

TECHNICAL GUIDE

First Steps

The first steps require an ATmega micro controller or a TI Launchpad 430 with a MSP430G2553 controller. The
AVR needs a separate RS232 connection to an PC, the MSP430 works with the USB connection for both the
command terminal and the reprogramming.

User Interface

amforth has a simple user interface. It is available as a serial port.

> cold
amforth 5.0 ATmega16 8000 kHz
> words
nr> n>r (i!) !i @i @e !e nip not s>d up! up@ ...
>

Next Steps

The next steps are performing some actions like LED on / off and defining new commands to extent the interpreter.
The Cookbook has a lot of recipes for both.

Architecture

Overview

amforth is a 16 bit Forth implementing the indirect threading model. The flash memory contains the whole
dictionary. The RAM contains buffers, variables and the stacks. Depending on the platform, either the EEPROM
or a special section of the flash is used for vital data such as pointers or configuration settings.

The compiler is a classic compiler without any optimization support.

Amforth uses all of the CPU registers internally: The data stack pointer, the instruction pointer, the user pointer,
and the Top-Of-Stack cell. The hardware stack is used as the return stack. Some registers are used for temporary
data in primitives.

Text Interpreter

The interpreter is a line based command interpreter. It based upon :REFILL to acquire the next line of characters,
located at a position SOURCE points to. While processing the line, the pointer >IN is adjusted accordingly. Both
words REFILL and SOURCE are USER based deferred words which allows to use any input source on a thread
specific level. The interpreter itself does not use any static buffers or variables (>IN is a USER variable as well).

19

AmForth Documentation, Release 6.5

A given string is handled by INTERPRET which splits it into whitespace delimited words. Every word is pro-
cessed using a list of recognizers. Processing ends either when the string end is reached or an exception occurs.

SOURCE and REFILL

SOURCE provides an addr/len string pair that does not change during processing. The task of REFILL is to fill
the string buffer, SOURCE points to when finished.

There is one default input source: The terminal input buffer. This buffer gets filled with REFILL-TIB that reads
from the serial input buffers (KEY). SOURCE points to the Terminal Input Buffer itself. Another input source are
plain strings, used by EVALUATE.

Recognizer

Recognizer are a part of the text (command) interpreter. They are responsible for analyzing a single word. The
result consists of two elements: The actual data (if any) and an object like identifier connected with certain

methods.

Interpret

Get Next Word

Recognize

Got one

End

No More Words

Check State

Compile

Compile

Execute

Interpret

The Forth text interpreter
reads from the input source and splits it into whitespace delimited words. Each word is fed into a list of actions
which parse it. If the parsing is successful (e.g. it is a number or a word from the dictionary) the recognizer leaves
the data and an method table to deal with it. Depending on the interpreter state one of the methods is executed to
finally process the data. The first method is called in interpreter state. It is usually a noop, since the recognizer
has done all the work already.

20 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

The 2nd method is responsible to perform the compile time semantics. That usually means to write it into the
dictioanary or to execute immediate words.

The third method is used by :command‘postpone‘ to compile the compilation semantics. It honors the immediate
flags as well.

Recognize is an iteration over a recognizer stack until the first parsing methods returns something different
than DT:NULL. If the recognizer stack is exhausted without a match, the DT:NULL return value is generated.
The string location that is passed to the parse actions is preserved and is restored for every iteration cycle.

Get Recognizer Stack

Rec-Stack Exhausted?

DT:NULL

Yes

Call Parse Action

Consume Rec-TOS

End

DT:NULL

Success

A recognizer consists of a
few words that work together. To ease maintenance, a naming convention is used: The recognizer itself is named
with the prefix rec:. The method table name gets the prefix r: followed by the same name as the recognizer.

POSTPONE serialises the parsed data as literals and adds the compile action from the method table. This an almost
generic operation, it depends only on the number of cells from the parsing actions.

Recognizer List

The interpreter uses a list of recognizers. They are managed with the words get-recognizers and
set-recognizers.

The entries in the list are called in order until the first one returns a different result but DT:NULL. If the list is
exhausted and no one succeeds, the DT:NULL is delivered nevertheless and leads to the error reactions.

The standard recognizer list is defined as follows

: default-recs
['] rec:intnum ['] rec:word
2 forth-recognizer set-recognizers

;

3.2. Architecture 21

AmForth Documentation, Release 6.5

The standard word marker resets the recognizer list as well.

INTERPRET

The interpreter is responsible to split the source into words and to call the recognizers. It also maintains the state.

: interpret
begin
parse-name ?dup if drop exit then
forth-recognizer recognize (addr len -- i*x r:table)
state @ if i-cell+ then \ get compile time action
@i execute ?stack

again
;

recognize always returns a valid method table. If no recognizer succeeds, the DT:NULL is returned with the
addr/len of the unknown-to-handle word.

API

Every recognizer has a method table for the interpreter to handle the data and a word to check (and convert)
whether a string matches the criteria for a certain data type.

\ order is important!
:noname ... ; \ interpret action
:noname ... ; \ compile action
:noname ... ; \ postpone action
dt-token: dt:foo

: rec:foo (addr len -- i*x dt:foo | DT:NULL) ... ;

The word rec:foo is the actual parsing action of the recognizer. It analyzes the string it gets. There are two
results possible: Either the word is recognized and the address of the data token is returned or the NULL data
token is used which is actually a predefined method table named DT:NULL.

The calling parameters to rec:foo are the address and the length of a word in RAM. The recognizer must not
change it. The result (i*x) is the parsed and converted data and the method table to deal with it.

There is a standard method table that does not require additional data (i*x is empty) and which is used to commu-
nicate the “not-recognized” information: r:fail. Its method table entries throw the exception -13 if called.

Other pre-defined method tables are dt:num to deal with single cell numeric data, dt:dnum to work with double
cell numerics and dt:xt to execute, compile and postpone execution tokens XT from the dictionary.

The words in the method tables get the output of the recognizer as input on the data stack. They are excpected to
consume them during their work.

Default (NULL)

This is a special system level recognizer. It is never called actually but its data token (DT:NULL) is used as both a
error flag and for the final error actions. Its methods get the addr/len of a single word. They consume it by printing
the string and throwing an exception when called. The effect is to get back to the command prompt if catched
inside the quit loop.

:noname type -13 throw ; dup dup
dt-token: dt:null

\ this definition is never called actually
: rec:fail (addr len -- r:fail)

2drop dt:null
;

22 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

NUMBER

The number recognizer identifies numeric data in both single and double precision. Depending on the actual data
width, two different data tokens are returned.

The postpone action follows the standard definitions by not allowing to postpone numbers. Instead the number is
printed and an exception is thrown.

' noop
' literal
:noname . -48 throw ; \ subject to dispute
dt-token: dt:num

' noop
' 2literal
:noname d. -48 throw ; \ subject to dispute
dt-token: dt:dnum

: rec:intnum (addr len -- n r:num | d r:dnum | r:fail)
number if
1 = if dt:num else dt:dnum then
else
dt:null

then
;

FIND

This recognizer tries to find the word in the dictionary. If sucessful, the execution token and the flags are returned.
The data token contains words to execute and correctly deal with immediate words for compiling and postponing.

(XT flags --)
:noname drop execute ;
:noname 0> if compile, else execute then ;
:noname 0> if postpone [compile] then , ;
dt-token: dt:xt

: rec:word (addr len -- XT flags dt:xt | dt:null)
find-name ?dup if
dt:xt

else
dt:null

then
;

Multitasking

amforth does not implement multitasking directly. It provides the basic functionality however. Within IO words
the deferred word PAUSE is called whenever possible. This word is initialized to do nothing (NOOP).

Exceptions

Amforth uses and supports exceptions as specified in the ANS wordset. It provides the CATCH and THROW
commands. The outermost catch frame is located at the interpreter level in the word QUIT. If an exception with
a negative value is catched, QUIT will print a message with this number and and re-start itself. Positive values
silently restart QUIT.

3.2. Architecture 23

AmForth Documentation, Release 6.5

The next table lists the exceptions, amforth uses itself.

Exception Meaning Thrown in
-1 silent abort ABORT
-2 abort with message ABORT”
-4 stack underflow ?STACK
-13 undefined word rec-notfound, tick
-16 Invalid word (create)
-50 search order exhausted SET-ORDER

Memory Allocation

The ANS 94 standard defines three major data regions: name space, code space and data space. The amforth
system architecture maps these memory types to the built-in ones: Flash, RAM and (if available) EEPROM.
These three memory types have their own address space independently from the others. Amforth does not unify
these address spaces into one.

Amforth uses the flash memory as the location for all standard data spaces: name, code and data space. Contrary
to the standard some words that should operate on the data space use RAM adresses instead. These words are
HERE, @ (fetch), ! (store) and simimliar. Similiarly the so called transient regions are in RAM as well.

Other words like , (comma) operate on the flash address and thus directly in the dictionary.

User Area

The User Area is a special RAM storage area. It contains the USER variables and the User deferred definitions.
Access is based upon the value of the user pointer UP. It can be changed with the word UP! and read with UP@ .
The UP itself is stored in a register pair.

The size of the user area is determined by the size the system itself uses plus a configurable number at compile
time. For self defined tasks this user supplied number can be changed for task local variables.

The first USER area is located at the first data address (usually RAMSTART).
Address offset (bytes) Purpose
0 Multitasker Status
2 Multitasker Follower
4 RP0
6 SP0
8 SP (used by multitasker)
10 HANDLER (exception handling)
12 BASE (number conversion)
14 EMIT (deferred)
16 EMIT? (deferred)
18 KEY (deferred)
20 KEY? (deferred)
22 SOURCE (deferred)
24 >IN
26 REFILL (deferred)

The User Area is used to provide task local information. Without an active multitasker it contains the starting
values for the stackpointers, the deferred words for terminal IO, the BASE variable and the exception handler.

The multitasker uses the first 2 cells to store the status and the link to the next entry in the task list. In that situation
the user area is/can be seen as the task control block.

Beginning with release 3.7 the USER area has been split into two parts. The first one called system user area
contains all the variables described above. The second one is the application user area that contains all variables
defined with the USER command. The default application user area is empty and by default of size zero.

24 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

Compiler

The Amforth Compiler is based upon immediate words. They are always executed, regardless of the value in the
state variable. All non-immediate words get compiled verbatim with their respective execution token. It is
simply appended to the current DP location.

Immediate words are usually executed (unless some special action such as postpone is applied). The immediate
words do usually generate some data or compile it to the dictionary. They are not compiled with their execution
token.

There are no optimization steps involved. The XT are written immediately into the dictionary (flash).

The inner interpreter, the forth virtual machine, can, just like a real CPU, only execute words, one after the next.
This linear control flow is usually not sufficient to do real work. The Forth VM needs to be redirected to other
places instead of the next one, often depending on runtime decisions.

Since Edsgar Dijkstra the structured programming is the preferred way to do it. AmForth provides all kinds of
them: sequences, selections and repetitions. Sequences are the simple, linear execution of consecutive words.
Selections provide a conditional jump over code segments. They are usually implemented with the ìf command.
Multiple selections can be made with case. Repetitions can be unlimited or limited. Limited Repetitions can use
flags and counter/limits to leave the loop.

There is also support for out-of-band control flow: Exceptions. They provide some kind of emergency exits to
solve hard problems. They can be catched at any level up to the outer text interpreter. It will print a message on
the command terminal and will wait for commands.

Building Blocks

All control structures can be implemented using jumps and conditional jumps. Every control operation results
in either a forward or a backward jump. Thus 6 building blocks are needed to create them all: (branch),
(0branch), >mark, <mark, >resolve and <resolve. None of them are directly accessible however.
Most of these words are used in pairs. The data stack is used as the control flow stack. At runtime the top-of-stack
element is the flag. All words are used in immediate words. They are executed at compile time and produce code
for the runtime action.

(branch) is a unconditional jump. It reads the flash cell after the command and takes it as the jump destination.
Jumps can be at any distance in any direction. (0branch) reads the Top-Of-Stack element and jumps if it is
zero (e.g. logically FALSE). If it is non-zero, the jump is not made and execution continues with the next XT in
the dictionary. In this case, the branch destination field is ignored. These two words are implemented in assembly.
A equivalent forth implementation would be

: (branch) r> 1+ @i >r ;
: (0branch) if (branch) else r> 1+ >r then ;

Note the chicken-and-egg problem with the conditional branch operation.

Contrary the MSP430. Its inner interpreter uses relative branches instead. That influences the next higher level
word internally, but does not affect words using them.

The mark words put the jump destination onto the data stack. This information is used by the resolve words
to actually complete the operation. The <mark additionally reserves one flash cell. The <resolve stores the
information for the backward jump at the current location of the dictionary pointer, the >resolve places the
information at the place the >mark has reserved and completes the forward jump. Every mark needs to be paired
with the right resolve.

: >mark dp -1 , ;
: >resolve ?stack dp swap !i ;

: <mark dp ;
: <resolve ?stack , ;

3.3. Compiler 25

AmForth Documentation, Release 6.5

The place holder -1 in >mark prevents a flash erase cycle when the jump is resolved using the !i in >resolve.
The ?stack checks for the existence of a data stack entry, not for a plausible value. It the data stack is empty, an
exception -4 is thrown.

: ?stack depth 0< if -4 throw then ;

Highlevel Structures

The building blocks described above create the standard control structures: conditional execution and various loop
constructs.

The conditional execution compiles a forward jump to another location. The jump destination is resolved with
then. An else terminates the first jump and starts a new one for the final then. This way an alternate code
block is executed at runtime depending on the flag given to the if.

: if postpone (0branch) >mark ; immediate
: else postpone (branch) >mark swap >resolve ; immediate
: then >resolve ; immediate

There is a rarely used variant of the if command, that compiles an unconditional forward branch: ahead. It
needs to be paired with a then to resolve the branch destination too. An else would not make any sense, but is
syntactically ok.

: ahead postpone (branch) >mark ; immediate

There are more variants of multiple selections possible. The case structure is based upon nested if‘s. Computed
goto’s can be implemented with jump tables whith execution tokens as code blocks. Examples are in the lib
directory.

The loop commands create a structure for repeated execution of code blocks. A loop starts with a begin to which
the program flow can jump back any time.

: begin <mark ; immediate

The first group of loop command are created with again and until. They basically differ from each with the
branch command they compile:

: until postpone (0branch) <resolve ; immediate
: again postpone (branch) <resolve ; immediate

The other loop construct starts with begin too. The control flow is further organized with while and repeat.
while checks wether a flag is true and leaves the loop while repeat unconditionally repeats it. Multiple
while ‘s are possible, they have to be terminated properly with a then for each of them (except the one, which
is terminated with the repeat.

: while postpone (0branch) >mark swap ; immediate
: repeat again >resolve ; immediate

Counted loops repeat a sequence of words for some predefined number of iterations. It is possible to exit prema-
turely. The standard loop checks for the exit condition after the loop body has been executed. A special variant
(?DO) does it once at the beginning and may skip the loop body completely. To actually implement the loop and
its possible exit points a separate LEAVE stack (named after the LEAVE forth word) is used at compile time. It
receives all premature exit points which are resolved when compiling LOOP (or +LOOP).

: endloop
<resolve \ standard backward loop
\ now resolve the premature exits from the leave stack
begin l> ?dup while postpone then repeat ;

: do postpone (do) <mark 0 >l ; immediate
: loop postpone (loop) endloop ; immediate
: +loop postpone (+loop) endloop ; immediate
: leave postpone unloop postpone ahead >l ; immediate

26 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

unloop is an assembly word dropping the loop counter and loop limit information from the return stack.

The ?do works differently. It uses the do and the leave stack to achieve its goals.

... ?docheck if do ... loop then

The helper word ?docheck checks the loop numbers and creates a well prepared stack content.

\ helper word
: ?docheck (count limit -- count limit true | false)

2dup = dup >r if 2drop then r> invert ;

: ?do postpone ?docheck
postpone if \ here we create the forward branch
postpone do \ initialite leave stack
swap >l \ put the IF destination on the leave stack

; immediate

The runtime action of do (the (do)) puts two information onto the return stack: The modified loop counter abd
the loop limit. The loop index and the loop limit are modified by adding 0x8000 to both numbers. That makes it
easy to check the boundary cross required by Forth by simply checking the controller overflow check. The price
to pay is a slightly slower access to the loop index (I and J).

The runtime of loop (the (loop)) checks the limits and with 0branch decides whether to repeat the loop
body with the next loop counter value or to exit the loop body. If the loop has terminated, it cleans up the return
stack. The +loop works almost identically, except that it reads the loop counter increment from the data stack.

The access to the loop counters within the loops is done with i and j. Since the return stack is used to manage
the loop runtime, it is necessary to clean it up. This is done with either unloop or leave. Note that unloop
does not leave the loop!

DOES>

DOES> is used to change the runtime action of a word that create has already defined. Since the dictionary is
in flash which may only be written once, the use of create is should be replaced with the command <builds.
This commands works exactly the same way but enables does> to work properly.

Its working is described best using a simple example: defining a constant. The standard word constant does
exactly the same.

> : con <builds , does> @i ;
ok

> 42 con answer
ok

> answer .
42 ok

The first command creates a new command con. With it a new word gets defined, in this example answer. con
calls create, that parses the source buffer and creates a wordlist entry answer. After that, within con the
top-of-stack element (42) is compiled into the newly defined word. The does> changes the runtime of the newly
defined word answer to the code that follows does>.

does> is an immediate word. That means, it is not compiled into the new word (con) but executed when con
gets compiled. This compile time action creates a small data structure similar to the wordlist entry for a noname:
word. The address of this data structure is an execution token. This execution token replaces the standard XT that
a wrongly defined con (using create instead of builds) would have written already. This leads inevitably to a flash
erase cycle, that may not be available on all platforms.

3.3. Compiler 27

AmForth Documentation, Release 6.5

Standard Wordlists

Forth 2012

amforth implements most or all words from many Forth 2012 word sets. Most words are already included in
the standard setup, others are loadable from files in the lib/forth2012 directory. A floating point library is
available from the community repository. Words from the word set FILE-ACCESS are dropped completely. The
others are at least partially implemented.

Core and Core EXT

All words from the CORE word set are available. CORE EXT drops the (deprecated) words C", CONVERT,
EXPECT, SPAN and ROLL.

Loop counters are checked on signed compares.

Number Prefixes The number base can be specified by prepending the $, # or % signs. Single characters such as
‘a’ are supported via a loadable module.

Defer and IS defer gives the possibility of vectored execution. Amforth has 3 different kind of such vectors,
varying in how they are stored: EEPROM, RAM or the USER area. The EEPROM makes it possible to
save the settings permanently, the RAM enables frequent changes. Finally the user area is for multitasking.

Buffer: The buffer allocates a named memory (RAM) region. It is superior to the usual create foo xx allot since
amforth has a non-unified memory model and the code snippet does not the same as an unified memory
model forth (with the dictionary being at the same memory as the allot command works).

Block

Amforth has almost complete block support to work with the flash memory and I2C eeprom devices.

To work with different backends, a layered design is used. The low level hardware access words load-buffer
and save-buffer are deferred words that are called with a RAM buffer location (addr/len pair) and the block
number. All thay have to do is to transfer the buffer content from/to the backend storage. The highlevel words
from the BLOCK wordset do the buffer management and provide the user visible API.

Double Number

Double cell numbers work as expected. Not all words are implemented. Entering them directly using the dot-
notation work for dots at the end of the number, not if the dot is somewhere within it.

Exception

Exceptions are fully supported. The words ABORT and ABORT" use them internally.

The implementation is based upon a variable HANDLER which holds the current return stack pointer position.
This variable is a USER variable.

Facility

The basic system uses the KEY? and EMIT? words as deferred words in the USER area.

The word MS is implemented with the word 1MS that busy waits almost exactly 1 millisecond. The calculation is
based upon the frequency specified at compile time. There are variants which are multitasking friendly but less
accurate.

The words EKEY and EKEY>CHAR are not implemented.

28 Chapter 3. Technical Guide

http://www.forth200x.org/number-prefixes.html
http://www.forth200x.org/deferred.html
http://www.forth200x.org/buffer.html

AmForth Documentation, Release 6.5

To control a VT100 terminal the words AT-XY and PAGE are written in forth code. They emit the ANSI control
codes according to the VT100 terminal codes.

File Access

amforth does not have filesystem support. It does not contain any words from this word set.

Floating Point

amforth has a loadable floating point library. It contains the basic words to deal with single precision floats.
The floats are managed on the standard data stack. After loading the library floats can be entered directly at the
command prompt. Some speed sensitive words are available as assembly code as well.

Locals

The locals support offers a single local value with the name X. It can easily expanded to support more by the user.

Memory Allocation

amforth does not support the words from the memory allocation word set.

Programming Tools

Variants of the words .S, ? and DUMP are implemented or can easily be done. The word SEE is available as well.

STATE works as specified.

The word WORDS does not sort the word list and does not take care of screen sizes.

The words ;CODE and ASSEMBLER are not supported. amforth has a loadable assembler which can be used with
the words CODE and END-CODE.

The control stack commands CS-ROLL and CS-PICK are not implemented. The compiler words operate with
the more traditional MARK / RESOLVE word pairs.

FORGET is not implemented since it would be nearly impossible to reset the search order word list with reasonable
efforts. The better way is using MARKER from the library.

An EDITOR is not implemented.

[IF], [ELSE] and [THEN] are not implemented.

n>r and nr> Fully supported

Traverse-wordlist Iterating over a wordlist works. The name>xy words are supported.

Word Lists and Search Order

Amforth supports the ANS Search Order word list. A word list consist of a linked list of words in the dictionary.
There are no limits on the number of word lists defined. Only the length of the active search order is limited:
There can be up to 8 entries at any given moment. This limit can be changed at compile time in the application
definition file.

Internally the word list identifier is the address where the word list start address is stored in the EEPROM. Creating
a new word list means to allocate a new EEPROM cell. Since the ANS standard does not give named word list
there is library code available that implements the old fashioned vocabulary.

3.4. Standard Wordlists 29

http://www.forth200x.org/n-to-r.html
http://www.forth200x.org/traverse-wordlist.html

AmForth Documentation, Release 6.5

Strings

All words from the strings word set are supported.

Amforth

COLD

The startup code is in the file cold.asm. It gets called directly from the MCU reset vector.

This assembly part of the startup code creates the basic runtime environment to start the virtual forth machine. It
sets up the stack pointers and the user pointer and places the forth instruction pointer on the word WARM. Then
it boots the forth virtual machine by jumping to the inner interpreter.

The start addresses of the stacks are placed to the user area for later use as well.

WARM

The word WARM is the high level part of the forth VM initialization. When called from within forth it is the
equivalent to a RESET. WARM initializes the PAUSE deferred word to do nothing, calls the application defined
TURNKEY action and finally hands over to QUIT.

TURNKEY

The turnkey is a EEPROM deferred word that points to an application specific startup word.

Its main task is to initialize the character IO to enable the forth interpreter to interact with the command prompt.
The examples shipped with amforth do this by “opening” the serial port, switching to decimal number conversion
and setting up the character IO deferred words (KEY, EMIT etc).

QUIT

QUIT initializes both data and return stack pointers by reading them from the user area and enters the traditional
ACCEPT – INTERPRET loop that never ends. It provides the topmost exception catcher as well. Depending on
the exception thrown, it prints an error message and restarts itself.

MCU Access

amforth provides wrapper words for the micro controller instructions SLEEP and WDR (watch dog reset). To work
properly, the MCU needs more configuration. amforth itself does not call these words.

Assembler

Lubos Pekny has written an AVR8 assembler for amforth. To support it, amforth provides the two words CODE and
END-CODE. The first creates a dictionary entry and sets the code field to the data filed address. The interpreter will
thus jump directly into the data field assuming some machine code there. The word END-CODE places a JUMP
NEXT into the data field. This finishes the machine instruction execution and jumps back to the forth interpreter.

Memories

Atmega micro controller have three different types of memory. RAM, EEPROM and Flash. The words @ and !
work on the RAM address space (which includes IO Ports and the CPU register), the words @e and !e operate
on the EEPROM and @i and !i deal with the flash memory. All these words transfer one cell (2 bytes) between
the memory and the data stack. The address is always the native address of the target storage: byte-based for

30 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

EEPROM and RAM, word-based for flash. Therefore the flash addresses 64 KWords or 128 KBytes address
space.

External RAM shares the normal RAM address space after initialization (which can be done in the turnkey action).
It is accessible without further changes.

For RAM only there is the special word pair c@/c! which operate with the lower half of a stack cell. The upper
byte is either ignored or set to 0 (zero).

All other types of external memory need special handling, which may be masked with the block word set.

Input Output

amforth uses character terminal IO. A serial console is used. All IO is based upon the standard words
EMIT/EMIT? and KEY/KEY?. Additionally the word /KEY is used to signal the sender to stop. All these words
are deferred words in the USER area and can be changed with the IS command.

The predefined words use an interrupt driven IO with a buffer for input and output. They do not implement a
handshake procedure (XON/XOFF or CTS/RTS). The default terminal device is selected at compile time.

These basic words include a call to the PAUSE command to enable the use of multitasking.

Other IO depend on the hardware connected to the micro controller. Code exists to use LCD and TV devices.
CAN, USB or I2C are possible as well. Another use of the redirect feature is the following: consider some input
data in external EEPROM (or SD-Cards). To read it, the words KEY and KEY? can be redirected to fetch the data
from them.

Strings

Strings can be stored in two areas: RAM and FLASH. It is not possible to distinguish between the storage areas
based on the addresses found on the data stack, it’s up to the developer to keep track.

Strings are stored as counted strings with a 16 bit counter value (1 flash cell) Strings in flash are compressed: two
consecutive characters (bytes) are placed into one flash cell. The standard word S" copies the string from the
RAM into flash using the word S,.

Hardware

Controller

Amforth is designed to run on AVR Atmega and MSP 430 micro controllers. It requires 8KB flash memory for
the basic system.

The ATtiny micro controllers and a few ATmega types lack the minimum flash capacity. The ATtiny’s lack some
machine instructions as well.

AVR8

The AVR8 platform cover the Atmega microcontrollers from Atmel. They are 8-bit systems. Amforth emulates a
16-bit forth on them.

Bootloader Support

Most AVR8 bootloaders will not work with amforth since they do not provide an application programming in-
terface to rewrite a single flash cell. The default setup will thus replace any bootloader found with some core
routines.

3.5. Hardware 31

AmForth Documentation, Release 6.5

It is possible to change the word !i to use an API and work with existing bootloaders. !i is a deferred word that
can be re-targeted to more advanced words that may do address range checks, write success checks or simply turn
on/off LEDs to visualize the flash programming.

Fuses

Amforth uses the self programming feature of the ATmega micro controllers to work with the dictionary. It is ok
to use the factory default settings plus the changes for the oscillator settings. It is recommended to use a higher
CPU frequency to meet the timing requirements of the serial terminal.

Fuses are the main cause for problems with the flash write operations. If the !i operation fails, make sure that
the code for it is within the boot loader section. It is recommended to make the bootloader section as large as
the NRWW section, otherwise the basic machine instruction spm may fail silently and the controller becomes
unresponsive.

CPU – Forth VM Mapping

The Forth VM has a few registers that need to be mapped to the microcontroller registers. The mapping has been
extended over time and may cover all available registers. The actual coverage depends on the amount of additional
packages. The default settings are shown in the table register_mappings.

Register Mapping

Forth Register ATmega Register(s)
W: Working Register R22:R23
IP: Instruction Pointer XH:XL (R27:R26)
RSP: Return Stack Pointer SPH:SPL
PSP: Parameter Stack Pointer YH:YL (R29:R28)
UP: User Pointer R4:R5
TOS: Top Of Stack R24:R25
X: temporary register ZH:ZL (R31:R30)

Extended Forth VM Register Mapping
Forth Register ATmega Register(s)
A: Index and Scratch Register R6:R7
B: Index and Scratch Register R8:R9

In addition the register pair R0:R1 is used internally e.g. to hold the the result of multiply operations. The register
pair R2:R3 is used as the zero value in many words. These registers must never be changed.

The registers from R10 to R13 are currently unused, but may be used for the VM extended registers X and Y
sometimes. The registers R14 to R21 are used as temporary registers and can be used freely within one module as
temp0 to temp7.

The forth core uses the T Flag in the machine status register SREG for signalling an interrupt. Any other code
must not change that bit.

Core System

Threading Model AmForth implements the classic indirect threaded variant of forth. The registers and their
mappings are shown in table Register Mapping.

Inner Interpreter For the indirect threading model an inner interpreter is needed. The inner interpreter does
the interrupt handling too. It repeatedly reads the cell, the IP points to, takes this number as the address for the
next code segment and jumps to that code. It is expected that this code segment does a jump back to the inner
interpreter (NEXT). The IP is incremented by 1 just before the jumps are done to get the next cell.

32 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

Check_Interrupt
W <- [IP] ; read at IP
IP <- IP+1 ; advance IP
X <- [W] ; EXECUTE phase, W points to execution token
JMP [X] ; read execution token and execute its code

NEXT The NEXT routine is the core of the inner interpreter. It does the mapping between the execution tokens
and the corresponding machine code. It consists of 4 steps which are executed for every forth word.

The first step is to check whether an interrupt needs to be handled. It is done by looking at the T flag in the
machine status register. If it is set, the code jumps to the interrupt handling part.

The next step is to read the cell the IP points to and stores this value in the W register. For a COLON word W
contains the address of the code field.

The 3rd step is to increase the IP register by 1.

The 4th step is the EXECUTE step.

EXECUTE This operation is the JUMP. It reads the content of the cell the W register points to. The result is
stored in the scratch pad register X. The data in X is the address of the machine code to be executed in the last step.
This step is used by the forth command EXECUTE too. The forth command does not get the address of the next
destination from the current IP but from the data stack.

This last step finally jumps to the machine code pointed to by the X scratch pad register.

DO COLON DO COLON (aka NEST) is the subroutine call. It pushes the IP onto the return stack. It then
increments W by one flash cell, so that it points to the body of the (colon) word, and sets IP to that value. Then
it continues with NEXT, which begins executing the words in the body of the (parent) colon word. Note that W
points to the execution token of the current word, so W+1 points to the parameter field (body) of the forth word.

push IP
IP <- W+1
JMP NEXT

EXIT The code for EXIT (aka UNNEST) is the return from a subroutine. It is defined in the forth word EXIT in
the dictionary. It reads the IP from the return stack and jumps to NEXT. The return stack pointer is incremented
by 2 (1 flash cell).

pop IP
JMP NEXT

Stacks

Data Stack The data stack uses the CPU register pair YH:YL as its data pointer. The Top-Of-Stack element
(TOS) is in a register pair. Compared to a straight forward implementation this approach saves code space and
gives higher execution speed (approx 10-20%). Saving even more stack elements does not really provide a greater
benefit (much more code and only little speed enhancements).

The data stack starts at a configurable distance below the return stack (RAMEND) and grows downward.

Return Stack The Return Stack is the hardware stack of the controller. It is managed with push/pop assembler
instructions. The default return stack starts at RAMEND and grows downward.

3.5. Hardware 33

AmForth Documentation, Release 6.5

Interrupts

Amforth routes the low level interrupts into the forth inner interpreter. The inner interpreter switches the execution
to a predefined word if an interrupt occurs. When that word finishes execution, the interrupted word is contin-
ued. The interrupt handlers are completely normal forth colon words without any stack effect. They do not get
interrupted themselves.

The processing of interrupts takes place in two steps: The first one is the low level part. It is called whenever an
interrupt occurs. The code is the same for all interrupts. It takes the number of the interrupt from its vector address
and stores this in a CPU register. Then returns with RET.

The second step does the inner interpreter. It checks whether the CPU register dedicated for interrupt handling has
a non-NULL content. If so it switches to interrupt handling at forth level. This approach has a penalty of 2 CPU
cycles for checking and skipping the branch instruction to the isr forth code if no interrupt occurred.

If an interrupt is detected, the forth VM clears the register and continues with the word ISR-EXEC. This word
reads the currently active interrupt number and calls the associated execution token. When this word is finished,
the word ISR-END is called. This word clears the interrupt flag for the controller (RETI).

This interrupt processing has two advantages: There are no lost interrupts (the controller itself disables interrupts
within interrupts and re-transmits newly discovered interrupts afterwards) and it is possible to use standard forth
words to deal with any kind of interrupts.

Interrupts from some hardware sources (e.g. the usart) need to be cleared from the Interrupt Service Routine. If
this is not done within the ISR, the interrupt is re-triggered immediately after the ISR returned control.

The downside is a relatively long latency since the the forth VM has to be synchronized with the interrupt handling
code in order to use normal colon words as ISR. This penalty is usually small since only words in assembly can
cause the delay.

34 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

COLD

Execute Word

T Flag Set?

Clear T Flag

Yes

Get Next XT

No

Next XT is ISR_EXEC

See also:

Interrupt Service Routines Interrupt Critical Section

Dictionary Management

The dictionary can be seen from several points of view. One is the split into two memory regions: NRWW and
RWW flash. This is the hardware view. NRWW flash cannot be read during a flash write operation, NRWW means
Non-Read-While-Write. This makes it impossible to change there anything at runtime. On the other hand is this
the place, where code resides that can change the RWW (Read-While-Write) part of the flash. For AmForth, the
command !i does this work: It changes a single flash cell in the RWW section of the flash. This command hides
all actions that are necessary to achieve this.

The NRWW section is usually large enough to hold the interpreter core and most (if not all) words coded in
assembly (not to be confused with the words that are hand-assembled into a execution token list) too. Having all
of them within a rather small memory region makes it possible to use the short-ranged and fast relative jumps
instead of slower full-range jumps necessary for RWW entries.

Another point of view to the dictionary is the memory allocation. The key for it is the dictionary pointer dp. It
is a EEPROM based VALUE that stores the address of the first unused flash cell. With this pointer it is easy to
allocate or free flash space at the end of the allocated area. It is not possible to maintain “holes” in the address
range. To append a single number to the dictionary, the command , is used. It writes the data and increases the
DP pointer accordingly:

3.5. Hardware 35

AmForth Documentation, Release 6.5

\ (n --)
: , dp !i dp 1+ to dp ;

To free a flash region, the DP pointer can be set to any value, but a lot of care has to be taken, that all other system
data is still consistent with it.

The next view point to the dictionary are the wordlists. A wordlist is a single linked, searchable list of entries.
All wordlists create the forth dictionary. A wordlist is identified by its wid, an EEPROM address, that contains
the address of the first entry. The entries themselves contain a pointer to the next entry or ZERO to indicate
End-Of-List. When a new entry is added to a list it will be the first one of this wordlist afterwards.

A new wordlist is easily created: Simply reserve an EEPROM cell and initialize its content with 0:

: wordlist (-- wid)
ehere 0 over !e
dup cell+ to ehere ;

This wid is used to create new entries. The basic procedure to do it is create:

: create ("name" --)
(create) reveal
postpone (constant) ;

(create) parses the current source to get a space delimited string. The next step is to determine, into which
wordlists the new entry will be placed and finally, the new entry is created, but it is still invisible:

: (create) (--)
parse-name wlscope
dup newest cell+ ! \ keep the wid
header newest ! \ keep the nt

;

The header command starts a new dictionary entry. The first action is to copy the string from RAM to the flash.
The second task is to create the link for the wordlist management

: header (addr len wid -- NT)
dp >r
\ copy the string from RAM to flash
r> @e ,
\ minor housekeeping

;

smudge is the address of a 4 byte RAM location, that buffers the access information. Why not not all words are
immediately visible is something, that the forth standard requires. The command reveal un-hides the new entry
by adjusting the content of the wordlist identifier to the address of the new entry:

: reveal (--)
newest cell+ @ ?dup if \ check if valid data
newest @ swap !e \ update the head of wordlist
0 newest cell+ ! \ invalidate
then ;

The command wlscope can be used to change the wordlist that gets the new entry. It is a deferred word that
defaults to get-current.

The last command postpone (constant) writes the runtime action, the execution token (XT) into the newly
created word. The XT is the address of executable machine code that the forth inner interpreter calls (see Inner
Interpreter). The machine code for (constant) puts the address of the flash cell that follows the XT on the
data stack.

Word Lists and Environment Queries

Word lists and environment queries are implemented using the same structure. The word list identifier is a EEP-
ROM address that holds the name field address of the first word in the word list.

36 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

Environment queries are normal colon words. They are called within environment? and leave there results at
the data stack.

find-name (und find for counted strings) uses an array of word list identifiers to search for the word. This list
can be accessed with get-order as well.

Wordlist Header Wordlists are implemented as a single linked list. The list entry consists of 4 elements:

• Name Field (NF) (variable length, at least 2 flash cells).

• Link Field (LF) (1 flash cell), points to the NFA of the next element.

• Execution Token (XT) (1 flash cell)

• Parameter Field (Body) (variable length)

The wording is some mixture of old style fig-forth and the more modern variants. The order makes it possible to
implement the list iterators (search-wordlist and show-wordlist) is a straight forward way.

The name field itself is a structure containing the flags, the length information in the first flash cell and the
characters of the word name in a packed format afterwards.

The anchor of any wordlist points to the name field address of the first element. The last element has a zero
link field content. The lists are created from lower addresses to higher ones, the links go from higher addresses
backwards to lower ones.

Memories

Flash The flash memory is divided into 4 sections. The first section, starting at address 0, contains the interrupt
vector table for the low level interrupt handling and a character string with the name of the controller in plain text.

The 2nd section contains the low level interrupt handling routines. The interrupt handler is very closely tied to the
inner interpreter. It is located near the first section to use the faster relative jump instructions.

The 3rd section is the first part of the dictionary. Nearly all colon words are located here. New words are appended
to this section. This section is filled with FFFF cells when flashing the controller initially. The current write pointer
is the DP pointer.

The last section is identical to the boot loader section of the ATmegas. It is also known as the NRWW area. Here
is the heart of amforth: The inner interpreter and most of the words coded in assembly language.

FLASH Structure Overview The reason for this split is a technical one: to work with a dictionary in flash the
controller needs to write to the flash. The ATmega architecture provides a mechanism called self-programming by
using a special instruction and a rather complex algorithm. This instruction only works in the boot loader/NRWW
section. amforth uses this instruction in the word I!. Due to the fact that the self programming is a lot more then
only a simple instruction, amforth needs most of the forth core system to achieve it. A side effect is that amforth
cannot co-exist with classic boot loaders. If a particular boot loader provides an API to enable applications to call
the flash write operation, amforth can be restructured to use it. Currently only very few and seldom used boot
loaders exist that enable this feature.

Atmegas can have more than 64 KB Flash. This requires more than a 16 bit address, which is more than the cell
size. For one type of those bigger atmegas there will be an solution with 16 bit cell size: Atmega128 Controllers.
They can use the whole address range with an interpretation trick: The flash addresses are in fact not byte addresses
but word addresses. Since amforth does not deal with bytes but cells it is possible to use the whole address range
with a 16 bit cell. The Atmegas with 128 KBytes Flash operate slightly slower since the address interpretation
needs more code to access the flash (both read and write). The source code uses assembly macros to hide the
differences.

An alternative approach to place the elements in the flash shows picture . Here all code goes into the RWW section.
This layout definitely needs a routine in the NRWW section that provides a cell level flash write functionality. The
usual boot loaders do not have such an runtime accessible API, only the DFU boot loader from atmel found on
some USB enabled controllers does.

3.5. Hardware 37

AmForth Documentation, Release 6.5

Interrupt Vectors

Startup code

Inner Interpreter

Free Flash

0x00

DP

amforth_start (NRWW_ST

Dictionary
dict_appl.inc
(pre-compiled colons)

FLASH_END

Dictionary
dict_appl_core.inc
(primitives)

Fig. 3.1: Default Flash Structure

Alternative FLASH Structure The unused flash area beyond 0x1FFFF is not directly accessible for amforth.
It could be used as a block device.

Flash Write The word performing the actual flash write operation is I! (i-store). This word takes the value and
the address of a single cell to be written to flash from the data stack. The address is a word address, not a byte
address!

The flash write strategy follows Atmel’s appnotes. The first step is turning off all interrupts. Then the affected
flash page is read into the flash page buffer. While doing the copying a check is performed whether a flash erase
cycle is needed. The flash erase can be avoided if no bit is turned from 0 to 1. Only if a bit is switched from 0 to 1
must a flash page erase operation be done. In the fourth step the new flash data is written and the flash is set back
to normal operation and the interrupt flag is restored. The whole process takes a few milliseconds.

This write strategy ensures that the flash has minimal flash erase cycles while extending the dictionary. In addition
it keeps the forth system simple since it does not need to deal with page sizes or RAM based buffers for dictionary
operations.

EEPROM

The built-in EEPROM contains vital dictionary pointer and other persistent data. They need only a few EEPROM
cells. The remaining space is available for user programs. The easiest way to use the EEPROM is a VALUE. There
intended design pattern (read often, write seldom) is like that for the typical EEPROM usage. More information
about values can be found in the recipe Values.

Another use for EEPROM cells is to hold execution tokens. The default system uses this for the turnkey vector.
This is an EEPROM variable that reads and executes the XT at runtime. It is based on the DEFER/IS standard. To
define a deferred word in the EEPROM use the Edefer definition word. The standard word IS is used to put a new
XT into it.

38 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

Interrupt Vectors

Startup code

Inner Interpreter

Free Flash

0x00

DP

Dictionary
dict_appl.inc

Dictionary
dict_appl_core.inc

0x1FFFF

Fig. 3.2: Alternative Flash Structure

Low level space management is done through the the EHERE variable. This is not a forth value but a EEPROM
based variable. To read the current value an @e operation must be used, changes are written back with !e. It
contains the highest EEPROM address currently allocated. The name is based on the DP variable, which points to
the highest dictionary address.

RAM

The RAM address space is divided into three sections: the first 32 addresses are the CPU registers. Above come
the IO registers and extended IO registers and finally the RAM itself.

amforth needs very little RAM space for its internal data structures. The biggest part are the buffers for the
terminal IO. In general RAM is managed with the words VARIABLE and ALLOT.

Forth defines a few transient buffer regions for various purposes. The most important is PAD, the scratch buffer. It
is located 100 bytes above the current HERE and goes to upper addresses. The Pictured Numeric Output is just at
PAD and grows downward. The word WORD uses the area above HERE as it’s buffer to store the just recognized
word from SOURCE.

Ram Structure shows an RAM layout that can be used on systems without external RAM. All elements are located
within the internal memory pool.

Another layout, that makes the external RAM easily available is shown in Alternative RAM Structure. Here are
the stacks at the beginning of the internal RAM and the data space region. All other buffers grow directly into the
external data space. From an application point of view there is not difference but a speed penalty when working
with external RAM instead of internal.

With amforth all three sections can be accessed using their RAM addresses. That makes it quite easy to work with
words like C@. The word ! implements a LSB byte order: The lower part of the cell is stored at the lower address.

For the RAM there is the word Rdefer which defines a deferred word, placed in RAM. As a special case there is

3.5. Hardware 39

AmForth Documentation, Release 6.5

0..0x1f Register

0x20..0x5f IO Register

0x60 .. RAMSTART
IO Register

ISR Vectors

1st User Area

Terminal Input Buffer

Data Stack

Return Stack

XRAM follows

HLD
PAD

allocated memory

Fig. 3.3: Ram Structure

0..0x1f Register

0x20..0x5f IO Register

0x60 .. RAMSTART
IO Register

RAM_START

Forth ISR Vectors

1st User Area

Terminal Input Buffer

HLD
PAD

Data Stack

Return Stack

Allocated Memory

Fig. 3.4: Alternative RAM Structure

40 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

the word Udefer , which sets up a deferred word in the user area. To put an XT into them the word IS is used.
This word is smart enough to distinguish between the various Xdefer definitions.

MSP430

The MSP430 is a 16-bit microcontroller from Texas Instruments. The Amforth implementation is based on code
from Camelforth by Brad Rodriguez. This code is heavily modified and completely merged with the AVR code
from the initial Amforth code base.

This merge affects all higher order word like the interpreter itself. Most low-level stuff remained unchanged
however. E.g. the inner interpreter is completely unchanged thus almost all assembly words work as before. To
make room in the 8KB sized code segment, many words were removed. Some of them reappear as loadable forth
source however. Some other like ,jmp are gone, since they make no real sense within amforth.

CPU Register Mapping

Standard Use

Forth Register MSP430 Register
W: Working Register R6
IP: Instruction Pointer R5
RSP: Return Stack Pointer SP (HW Stack)
PSP: Parameter Stack Pointer R4
UP: User Pointer R14
TOS: Top Of Stack R7
X: temporary register R10
Loop Index R8
Loop Limit R9
Y: temporary register R11
Q: temporary register R12

The remaining registers are used by the CPU itself (R0-R3).

Extended Forth VM Register Mapping
Forth Register MSP430 Register(s)
A: Index and Scratch Register R15
B: Index and Scratch Register R13

Core System

Threading Model AmForth implements the classic indirect threaded variant of forth. The registers and their
mappings are shown in table CPU Register Mapping.

Inner Interpreter For the indirect threading model an inner interpreter is needed. On the MSP 430 it almost
the same as on the AVR8 platform. There are two major differences.

• the NEXT routine is compiled into each word, there is no central NEXT code.

• It does not support interrupts.

Memory Allocation

The ANS 94 standard defines three major data regions: name space, code space and data space. The MSP430
system architecture uses three memory types too: Flash, RAM and Info Flash. These three memory types share
a common address space. The Info Flash is copied to a pre-defined RAM region, that can be written back us-
ing SAVE. This write back is not performed automatically. That is a major difference to the EEPROM based
configuration area in the AVR8.

3.5. Hardware 41

AmForth Documentation, Release 6.5

User Area

The User Area is a special RAM storage area. It contains the USER variables and the User deferred definitions.
Access is based upon the value of the user pointer UP. It can be changed with the word UP! and read with UP@ .
The UP itself is stored in a register pair.

The size of the user area is determined by the size the system itself uses plus a configurable number at compile
time. For self defined tasks this user supplied number can be changed for task local variables.

The first USER area is located at the first data address (usually RAMSTART).
Address offset (bytes) Purpose
0 Multitasker Status
2 Multitasker Follower
4 RP0
6 SP0
8 SP (used by multitasker)
10 HANDLER (exception handling)
12 BASE (number conversion)
14 EMIT (deferred)
16 EMIT? (deferred)
18 KEY (deferred)
20 KEY? (deferred)
22 SOURCE (deferred)
24 >IN
26 REFILL (deferred)

The User Area is used to provide task local information. Without an active multitasker it contains the starting
values for the stackpointers, the deferred words for terminal IO, the BASE variable and the exception handler.

The multitasker uses the first 2 cells to store the status and the link to the next entry in the task list. In that situation
the user area is/can be seen as the task control block.

Dictionary Management

The dictionary has all words and code. It is located in the flash region. The memory is managed with the dp
dictionary pointer. It is a configuration RAM variable.

\ (n --)
: , dp !i dp 1 +! ;

Wordlists too use the configuration RAM. The wordlist identifier is the address of a RAM cell, that contains the
link to the first word in the list.

: wordlist (-- wid)
infodp @ 0 over !
dup cell+ infodp !e ;

The header command starts a new dictionary entry. It creates the same layout as the AVR8 but differs in the
way, the header is built.

: header (addr len wid -- NT)
@ , \ link field
$ff c, \ flag field
ihere >r \ Name Token NT
s, \ copy the string from RAM to flash
r> \

;

All higher level structures are identical.

42 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

Memories

Flash Flash contains the dictionary. The actual placement depends on the device type but usually the amforth
core system is at the higher addresses. User specific words start at flash start.

Reqriting flash pages is only possible if enough RAM ressources are available to buffer a whole page. Since a
page is usually 512 bytes in size, the smaller device types like the G2553 cannot rewrite flash cells.

Info Flash A 128 bytes segment called INFO D is used for configuration data. This block is copied to RAM
at startup. Any changes to the data are applied to this RAM copy. Only an explicit command SAVE writes the
configuration settings back to the info flash.

RAM RAM is used for the info flash copy, data like the USER area, buffers such as the terminal input buffer
and the acutal user data. Technically it would be possible to place the dictionary here too since nothing in the
MSP430 architecture prevents this.

FRAM Some devices use FRAM instead of flash memory. While not strictly necessary, they too require the
save command to make all changes to the dictionary permanent. This memory supports the create command.

Source Organization

Overview

amforth is written in assembler. Only a few are actually assembly words, most are pre-compiled forth code.
There are three major directories containing the code: avr8, msp430 and common. Each contain a number of
subdirectories like lib and words that contain actual source files. Almost every word uses its own source file
with a descriptive name. These elementary source files are collected in include file sets, called dictionary files.
Depending on the controller type, different dictionary file sets should be used. Most of the decisions are made
automatically by using the single top-level file amforth.asm.

The assemblers used suuport a list of include directories which is used in order. That makes it possible to have
an application specific words directory that may contain the same file names as the amforth provided ones that
take precedence during the assembly process. Likewise the controller specific directories are searched before the
common directory.

Device Settings

Every Atmega has its own specific settings. They are based on the official include files provided by Atmel and
define the important settings for the serial IO port (which port and which parameters), the interrupt vectors and
some macros.

Adapting another ATmega micro controller is as easy as copy and edit an existing file from a similar type.

The last definition is a string with the device name in clear text. This string is used within the word VER.

Application Code

Every build of amforth is bound to an application. There are a few sample applications, which can be used either
directly (AVR Butterfly) or serve as a source for inspiration (template application).

The structure is basically always the same. First the file preamble.inc has to be included. After that some
definitions need to done: The size of the Forth buffers, the CPU frequency, initial terminal settings etc. As the last
step the amforth core is included.

3.6. Source Organization 43

AmForth Documentation, Release 6.5

For a comfortable development cycle the use of a build utility such as make or ant is recommended. The
assembler needs a few settings and the proper order of the include directories.

Tools

Host

There a few number of tools on the host side (PC) that are specifically written to support amforth. They are written
in script languages like Perl and python and should work on all major operating systems. They are not needed to
use amforth but may be useful.

Part description Converter

The pd2amforth.pl script reads a part description file in XML format (comes with the Atmel Studio package)
and produces the controller specific devices/controllername/* files.

Documentation

The tool makerefcard reads the assembly files from the words subdirectory and creates a reference card. The
resulting LaTeX file needs to be processed with latex to generate a nice looking overview of all words available
in the amforth core system.

The command make-htmlwords creates the linked overview of all words on the amforth homepage.

Uploader

To transfer forth code to the micro controller some precautions need to taken. During a flash write operation all
interrupts are turned off. This may lead to lost characters on the serial line. One solution is to send very slowly
and hope that the receiver gets all characters. A better solution is to send a character and wait for the echo from
the controller. This may sound awfully slow at the glance but it turned out to be a fast and reliable strategy.

An example for the first strategy can be used with the program ascii-xfer. Calling it with the command line
parameters

$ ascii-xfr -s -c $delayChar -l $delayLine file > $tty

will work but the upload of longer files needs a very long time: $delayChar can be 1 or 2 ms, $delayLine around
800 ms.

Uploader++

The powerful Python script amforth-shell.py is using echo to regulate uploading. It recognizes Forth com-
ments, single and multi line, and skips uploading them. The shell also features automatic file inclusion via #include
filename.frt meta commands and, what can save a lot of dictionary space and clutter, it does constant substitution
for the AVR register names and the project’s own definitions (via a locally provided appl_defs.frt file). The
shell has much more to offer, please read its script.

Controller

There are a few tools that may be useful on the controller. They are implemented as loadable forth code that may
affect internal data and work flows in a non-portable way. In particular are available a profiler (counting calls to
words), a call tracer (printing a stack trace while executing the words), a timing utility (benchme), a few memory
dump tools and a see that may be useful to revert the compilation process (gets some forth code from compiled
words).

44 Chapter 3. Technical Guide

AmForth Documentation, Release 6.5

See also:

Profiler Debug Shell Watcher Tracer

3.7. Tools 45

AmForth Documentation, Release 6.5

46 Chapter 3. Technical Guide

CHAPTER

FOUR

COMMENTED PROJECTS

A collection of projects using amforth.

Nodes on a RS485 Bus

Author Erich Wälde

Contact amforth-devel@lists.sourceforge.net

Date 2015-04-19

Contents

• Nodes on a RS485 Bus
– 1 Abstract
– 2 Motivation: The Project “collector”
– 3 Hardware Requirements
– 4 Software Requirements
– 5 Implementation Plan
– 6 Code

* 6.1 start
* 6.2 changing the prompts
* 6.3 stationID
* 6.4 emit-on-off
* 6.5 adding rs485 r/w handling
* 6.6 mpc 1: making usart_rx_isr a forth level word

· 6.6.1 replace usart_tx_isr with a Forth word
· 6.6.2 register the new function as ISR

* 6.7 mpc 2: adding mpc after all
* 6.8 going to quiet mode on unparsable input
* 6.9 turnkey

– 7 creating a node
* 7.1 counter sensor

– 8 The somtimes-not-so-obvious things
– 9 Finally
– 10 References

1 Abstract

The cookbook style recipes presented below are interconnected by the desire to create a solution connecting several
controller nodes together by rs485 network for periodic data collection. A few decisions have been taken upfront:

• The rs485-bus is wired up as “simplex” (not duplex).

47

mailto:amforth-devel@lists.sourceforge.net

AmForth Documentation, Release 6.5

• There is exactly one node on the rs485 network acting as bus-master (the data collecting Linux system) and
initiating any data transfer.

• Every node has to exlicitly switch its bus transceiver to “send” mode when writing data onto the bus.

• There must be a means to address one node whereas all the other nodes must remain silent.

Substantial parts of this solution were inspired or recycled from a project published by Lubos Pekny.

The author is running a set of currently 5 data collecting controller nodes on one rs485 bus for several years now.
The code provided stable operation so far.

For this article the author decided to “redo everything” in plain amForth, well almost everything, as it turned out.

2 Motivation: The Project “collector”

When starting with microcontrollers years ago I needed to do something with them, that looked useful at least to
me. So very soon I started to deal with sensors to measure temperature, pressure, and humidity of air. The classical
“weather station” project. This worked, but soon I wanted to have the values not only displayed but rather collected
— some day nice graphs would be interesting, or so I thought. So I connected a small single-board-computer [1]
to the only one controller with a serial cable. This worked for a long time.

Later I had the idea to collect temperatures at other points in the house as well. I could have added more sensors
and long cables to the only one controller, but instead I decided to add another controller at the end of a long cable.
Now I needed a way to talk to two (or more) controllers connected “somehow” the the single board computer. I
could have added more serial interfaces, one for each controller, but I didn’t like the idea. Instead I decided to
connect two (or more) controllers via one long cable using the RS485-Bus specification.

The RS485-Bus is an electrical specification. A (possibly twisted) pair of wires is used to connect two nodes.
The signal is differential, the difference in potential between the two wires is used as information. That way the
whole setup is fairly immune against noise, as this normally adds the same shift in potential to both wires. The
standard is good for a distance up to 1200 m, but should work much longer distances with slow data rates and
proper termination.

In order to exchange information on the RS485-bus the same timing and encoding is used as on a normal serial
interface (RS232). The idle levels are interpreted as 1, the first bit is the start bit and always 0, then 8 data bits
follow, and then one or more stop bits are sent. The stop bits are also 1 and correspond to the idle levels. So there
is nothing new here.

However, if several nodes are on the bus, to which one am I talking? And if it is the wrong one, how do I “address”
the correct one? In order to distinguish addresses (or control bytes) from ordinary data, some agreement has to be
established, for example

• Bytes with the most significant bit set are treated as addresses or control bytes

• Bytes with the most significant bit cleared are treated as ordinary data

If the bytes 0x00 .. 0x7f (the lower half of the ascii table) are sufficient for all data exchange, then 8 data
bits are still good. If not, 9 data bits can be used in many cases. AVR controllers provide that possibility. There is
a project using 9bit communication on Linux as well (uLan), Links section.

In my case I decided to transfer all information as ascii strings, e.g.

7F01:8,22.40,22.87,23.24

where 7F is the station address (stationID) in hex, 01 is the sensor number on that node (also in hex), and after the
colon a list of 4 numerical values, their precise meaning being entirely irrelevant at this point. The main advantage
is that I can just read everything on the bus in clear with little technical overhead.

Currently I run a set of 5 controllers with a variety of sensors:

• temperature and humidity (indoors and outdoors), pressure of air

• voltage of an accumulator providing power to a remote system

• distance (ultrasonic range finder) which translates to the amount of water in a tank

48 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

• counts of meters (electricity, water, natural gas)

The “collector” is a perl script running on the single board computer and collecting the data from the controllers
every 2 or 10 minutes. This program acts as the bus master, the other nodes do not initiate any data exchange. The
data is then accumulated in a sqlite database. A “viewer” perl script will then produce graphs of selected values
over time. Other options are possible, of course.

3 Hardware Requirements

All controller nodes need to have a RS485-transceiver. The transceiver needs 3 connections to the controller:

1. TX –> Data Out

2. RX <– Data In

3. Port D7 –> Write/Read select (idle = read = low)

An RS232 – RS485 converter of some sort is needed to connect the serial interface of the collector computer to
the bus. USB – RS485 dongles are available as well. Please note, that the connector should not produce a local
echo of the bytes transmitted, or software needs to take care of the double echo. The controllers are sending an
echo character as well, this serves as handshake when uploading forth code, too.

Power supply can be local to any node, but serving power on 2 more wires is also possible. When having long
cables +12V supply voltage and step down converters on every board seem like a good idea.

4 Software Requirements

1. Any node should be quiet and not write anything to the bus unless explicitly requested to do so. This explicit
request translates into some sort of addressing. Preventing any output is most easily achieved by changing
emit.

2. Bytes 0x00 .. 0x7f are considered normal data, bytes 0x80 .. 0xff are considered adresses (or
control bytes).

3. every node needs to have an address or stationID assigned

4. The controllers make use of the so called multi processor communication (MPC) mode to ignore traffic
between other nodes already in hardware.

5. a write operation to the bus must assert the W/R pin to write before transmission.

4.1. Nodes on a RS485 Bus 49

AmForth Documentation, Release 6.5

6. Upon completion of the (asynchronous) data transmit the W/R pin has to be released, e.g. automatically by
using the transmit complete interrupt.

7. The implementation should be in Forth entirely. A few exceptions showed up during implementation.

8. If a node is power cycled, nothing weird should happen on power up. Especially nothing should be written
to the bus at all.

9. a modified prompt shall include the address (stationID) of the node at the other end of the communication.
This is solely to provide immediate visible feedback, it is not needed for proper communication.

10. While experimenting it turned out that sometimes more than one controller is in normal mode. They will
produce what I call “echo loops”. The output (mostly error messages) of one node will trigger more output
(error messages) of the other node. I decided to implement harsh measures: whenever command line will
produce an error message, then instead put the node back to quiet mode.

5 Implementation Plan

In order to achieve the above goals, a set of mutually independant things were implemented.

1. stationID, prompts

This is to satisfy requirements 3 and 9. The code is fairly simple, even short.

stationID is an eeprom backed value with a cache place in RAM.

The prompt itself is produced by .ready. This is a deferred word and therefore can be overridden easily
by another function. So we implement a new function p_id_rd which will then be registered into the
deferred function .ready.

2. -emit / +emit

In order to prevent any output from the controller, I chose to make emit point to drop rather than tx.
-emit will take care of this. This word will be called in the next part at startup time.

3. rs485 read/write pin handling

One pin on the controller has to be selected to drive the read/write-pin of the transceiver. The idle state
should be low (0) or read, which is achieved by a pull-down resistor.

• provide constants to declare the selected pin

• switch the pin to output on startup

• set the pin to write (1) before transmission

• release the pin to read (0) upon completion. Use the transmit complete interrupt to achieve this.

We can now write to and read from the RS485 bus. We can handle only one controller so far.

4. mpc — multi processor communication

This is the most complex part.

• set quiet mode set the serial interface to 7N2 (7 data bits, no parity bit, 2 stop bits), set the MPCM0 bit
in register UCSR0C

• when receiving a byte with the most significant bit set, inspect the byte and decide whether this is the
local address or not

• if not, remain in quiet mode

• if yes, then switch the serial interface to normal mode (8N1) and handle all incoming data

• set normal mode: set the serial interface to 8N1, clear the MPCM0 bit in register UCSR0C

It turned out that the function usart_rx_isr is implemented in assembly and registered as a low level
interrupt service routine (ISR). This prevents overriding the registered interrupt service routine with another
function. I decided to change this and make usart_rx_isr a forth level routine (assembly change 2) and
register it as a high level interrupt. This way the ISR can be replaced by some other function.

50 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

Unsurprisingly replacing the ISR needs explicit access to the ring buffer that the original ISR is using. It is
accessed by key as well and should not change. So I added forth level headers to make the space in RAM
available as forth constants/variables (assembly change 3)

5. recognizer: go quiet if command not found

amForth provides recognizers. There is a list of them, which can be changed. The first in the list is
rec:word, it will try to find the token in the word list. If it fails, the next one in the list is called:
rec:num. It will try to parse the input token as a number. If it fails the list is exhausted and the final
r:fail will be called to issue an error message and do some cleanup.

I decided to add a third recognizer to the end of the list named rec:quiet. It will not parse the input
token again, but clean up the arguments. Then it will set the controller to quiet mode (call -emit +mpc7)
and signal success rather than error. This way the pointer in r:fail is not called.

6. startup / turnkey

In the end all of the above things need to be put together to ensure correct startup and initialization of all
parts involved. Pay attention to turnkey and power cycle.

6 Code

This code was re-developed and tested on an atmega644p running amForth 5.5.

6.1 start

The remainder of this article assumes that we have a working setup derived from the

amforth/releases/5.5/appl/template

directory. Set appropriate values for the controller type, crystal frequency, and baud rate to appropriate values for
your board.

• Makefile

MCU=atmega644p

• main.asm

.equ F_CPU = 11059200

.set BAUD=115200

Now we are at the point where the controller should talk to us on the serial interface using a terminal program,
e.g. minicom:

Welcome to minicom 2.7

OPTIONS: I18n
Compiled on Jan 1 2014, 09:30:18.
Port /dev/ttyUSB1, 16:46:00

Press CTRL-A Z for help on special keys

amforth 5.5 ATmega644P
>

6.2 changing the prompts

With the release 6.3 and newer the appearance of the prompt can be changed if we so desire:

4.1. Nodes on a RS485 Bus 51

AmForth Documentation, Release 6.5

amforth 6.3 ATmega644P
> variable (p_rd)
ok
> ' .ready defer@ (p_rd) !
ok
> : new_p_rd cr ." --new> " ;
ok

> ' new_p_rd is .ready
ok

--new> 1 3 + .
4 ok
--new> (p_rd) @ is .ready
ok

>

This will be used in the next step to display the content represented by stationID in the ready-prompt.

6.3 stationID

StationID is a value, permanently stored in EEPROM and copied to a RAM location on startup. So we need
to load the appropriate word Evalue:

include lib/forth2012/core/value.frt

After that we are able to create a value, the content of which is backed in EEPROM:

$007f Evalue stationID

With this in place we are now in a position to create a new function implementing a new prompt. In order to make
it always look the same (two digits, leading zeros) we add the word u0.r to the dictionary in dict_appl.inc
(please note the leading dot and the quotes, since this is assembly syntax):

.include "words/uzerodotr.asm"

reassemble and reflash amForth. Then define the new word p_id_rd

: p_id_rd
cr
base @
hex
[char] ~ emit
stationID 2 u0.r
[char] > emit
space
base !

;

We should also take care to save and restore the content of base, since I decided to print out the value of
stationID in hexadecimal. Using the new things should work like this:

amforth 6.3 ATmega644P ok
> stationID decimal .
127 ok
> p_id_rd

~7F> ok
> ' p_id_rd is .ready
ok

~7F> $42 to stationID
ok

~42>

52 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

The value $007F is the highest address available for the above mentioned 7-bit addressing scheme, so I chose it
as the default. The exact value can be changed here or overwritten later when loading the code with something
like

$42 to stationID

6.4 emit-on-off

In order to prevent the controller from writing to the rs485 bus unless explicitly requested, I decided to defer
emit to drop just to make sure. This requires two fairly simple words

variable old-emit
' emit defer@ old-emit !
: -emit

['] emit defer@ old-emit !
['] drop is emit

;
: +emit

old-emit @ is emit
;

After loading the code we can test this:

amforth 6.3 ATmega644P ok
~42>
~42> : hi ." howdy, mate!" cr ;
ok

~42> hi
howdy, mate!
ok

~42> -emit hi +emit
ok

6.5 adding rs485 r/w handling

In order to drive the rs485 transceiver, we need to implement the following things:

1. select W/R pin

This pin needs to be selected, initialized as output and set to low.

$2B constant RS485_PORT \ memory mapped
$2A constant RS485_DDR \ .
$80 constant RS485_PIN_MASK
: rs485-pin-output

RS485_DDR c@ RS485_PIN_MASK or RS485_DDR c!
;

Of course the functions in lib/bitnames.frt could be used as well, but for the argument of smaller depen-
dencies, I decided to implement this directly.

2. set W/R pin high (write) or low (read)

Two simple functions will do this:

: rs485-write
RS485_PORT c@ RS485_PIN_MASK or RS485_PORT c!

;
: rs485-read

RS485_PORT c@ RS485_PIN_MASK invert and RS485_PORT c!
;

4.1. Nodes on a RS485 Bus 53

AmForth Documentation, Release 6.5

3. set W/R pin to write (1) before sending a byte

Before sending any byte, we need to set the W/R pin high. So we reimplement tx-poll, the function that
transfers one byte to the serial interface.

$C6 constant UDR0 \ usart0 data register
: rs485-tx-poll (c --)
begin tx?-poll until
rs485-write
UDR0 c!

;

4. release W/R pin upon transfer completion

After sending the byte, the W/R pin should be released to zero. This happens some time after initiating a
transfer. However, the Atmel engineers have anticipated this problem and provided the transfer complete
interrupt for our convenience.

: tx-complete-isr
RS485_PORT c@ RS485_PIN_MASK invert and RS485_PORT c!

;

$2C constant USART0__TXAddr \ USART0, Tx Complete
$40 constant UCSR0B_TXCIE0
$C1 constant UCSR0B
: +rs485
rs485-pin-output
rs485-read
['] tx-complete-isr USART0__TXAddr int!
['] rs485-tx-poll is emit
UCSR0B c@ UCSR0B_TXCIE0 or UCSR0B c!

;
: -rs485
['] noop USART0__TXAddr int!
['] tx-poll is emit
UCSR0B c@ UCSR0B_TXCIE0 invert and UCSR0B c!

;

The functions +rs485 and -rs485 enable and disable the whole rs485 bus connection. Apart from
changing the deferred word emit and registering the interrupt service routine to the transfer complete
interrupt, the interrupt itself must be enabled in the register UCSR0B.

At this point we have everything in place to connect to the controller via the rs485 bus. +rs485‘ needs to be
called during startup, which is the only missing piece at this point.

6.6 mpc 1: making usart_rx_isr a forth level word

While working on this particular implemention of my code, namely reimplementation in as much Forth code as
possible, I came across a subtle feature of the amForth implementation (as of version 5.5). Interrupt handling
in amForth is twofold: the low level part (written in assembly) is basically doing the bookkeeping, clearing the
interrupt and then calling into a amForth table of registered functions. This provides the possibility to write
interrupt service routines (ISR) in high level Forth rather than assembly. Registering your own ISR is a matter of
one line:

' your-own-isr Interrupt-Vector-Addr int!

6.6.1 replace usart_tx_isr with a Forth word

This part is not particularly difficult, because a Forth equivalent is found already as a comment in the asm file.

54 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

; forth code:
; : rx-isr USART_DATA c@
; usart_rx_data usart_rx_in c@ dup >r
; + !
; r> 1+ usart_rx_mask and usart_rx_in c!
; ;
; setup with
; ' rx-isr URXCaddr int!

I kept the name, but please note that it does not refer to the asm label any more — usart_rx_isr is now a
proper Forth word.

6.6.2 register the new function as ISR

The new function must be registered somewhere in the startup of amForth, because otherwise there will be no
access to the command loop via the serial interface. So in function applturnkey we add the equivalent of

' usart_rx_isr USART0__RXAddr int!

just before globally enabling interrupts.

; (--) System
; R(--)
; application specific turnkey action
VE_APPLTURNKEY:

.dw $ff0b

.db "applturnkey",0

.dw VE_HEAD

.set VE_HEAD = VE_APPLTURNKEY
XT_APPLTURNKEY:

.dw DO_COLON
PFA_APPLTURNKEY:

.dw XT_USART

; register usart_rx_isr
.dw XT_DOLITERAL ; ' usart_rx_isr URXCaddr int!
.dw XT_USART_RX_ISR
.dw XT_DOLITERAL
.dw URXCaddr
.dw XT_INTSTORE

.dw XT_INTON

.dw XT_VER

.dw XT_EXIT

Assembling amForth and programming the controller with these changes must result in an equally usable system
as it was before.

6.7 mpc 2: adding mpc after all

Entering MPC mode in this case means configuring the serial interface to 7N2 (7 data bits, no parity bit, 2 stop
bits) and setting the MPCM0 bit in register USCR0A.

In that mode, if a data frame is received with the most significant bit cleared (0), the the data frame is silently
ignored.

In that mode, if a data frame is received with the most significant bit set (1), then the data frame shows up in
register UDR0, the data register of the serial interface. An interrupt is generated and the corresponding ISR is
called.

All nodes on the bus will inspect the just arrived address byte. If the value of the address byte is the same as
the configured node address (also known as stationID), only then the serial interface is reconfigured to 8N1

4.1. Nodes on a RS485 Bus 55

AmForth Documentation, Release 6.5

and the MPCM0 bit is cleared. This node is then awake from a communication point of view. It will receive all
following data frames and is expected to act on them.

All other nodes on the bus will keep the 7N2 mode of the serial interface and remain silent from a communication
point of view.

The awake state will not end and must be changed explicitly.

Things that need to be done are

1. provide a few definitions for readability (recycled from devices/$(MCU)/$(MCU).frt — make sure
to load the correct file for your controller!)

$2C constant USART0__TXAddr \ USART0, Tx Complete
$28 constant USART0__RXAddr \ USART0, Rx Complete
$40 constant UCSR0B_TXCIE0
$C0 constant UCSRA \ UCSR0A, really
$10 constant UCSRA_FE0 \ frame error
$08 constant UCSRA_DOR0 \ data over run
$04 constant UCSRA_UPE0 \ parity error
$01 constant UCSRA_MPCM0 \ mpc mode enabled
$C1 constant UCSR0B
$C2 constant UCSRC
$C6 constant UDR0

2. waiting for the currently active transfer to complete (reusing definitions from the rs485 section above)

: txc begin RS485_PORT c@ RS485_PIN_MASK and 0= until ;

This is needed whenever we want to switch to mpc mode. Without waiting we will destroy any ongoing
transmit.

3. enabling MPC mode (7N2)

: +mpc7
txc
$0C UCSRC c! \ 7N2
UCSRA c@ $01 or UCSRA c! \ MPCM0=1

;

4. disabling MPC mode (8N1)

: -mpc7 (--)
UCSRA c@ $01 invert and UCSRA c! \ MPCM=0
$06 UCSRC c! \ 8N1

;

5. access to the RX data ring buffer

Handling incoming data unfortunately requires access to the variables of the rx ring buffer, which are not
readily available in forth. In a local copy of drivers/usart-isr-rx.asm we add appropriate provi-
sions. The existing declaration of the used RAM space and sizes

; sizes have to be powers of 2!
.equ usart_rx_size = $10
.equ usart_rx_mask = usart_rx_size - 1
.dseg
usart_rx_data: .byte usart_rx_size+2
usart_rx_in: .byte 2
usart_rx_out: .byte 2
.cseg

will be made available as amForth constants and variables.

\ variable USART_RX_DATA N allot \ &buffer[0]
\ variable USART_RX_IN \ index
\ N 1- constant USART_RX_MASK \ length-1, length=2^n

56 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

; (-- value) constant USART_RX_DATA
VE_USART_RX_DATA:

.dw $FF0D

.db "USART_RX_DATA",$00

.dw VE_HEAD

.set VE_HEAD = VE_USART_RX_DATA
XT_USART_RX_DATA:

.dw PFA_DOVARIABLE
PFA_USART_RX_DATA:

.dw usart_rx_data

; (-- addr) variable USART_RX_IN
VE_USART_RX_IN:

.dw $ff0b

.db "USART_RX_IN",$00

.dw VE_HEAD

.set VE_HEAD = VE_USART_RX_IN
XT_USART_RX_IN:

.dw PFA_DOVARIABLE
PFA_USART_RX_IN:

.dw usart_rx_in

; (-- value) constant USART_RX_MASK
VE_USART_RX_MASK:

.dw $FF0D

.db "USART_RX_MASK",$00

.dw VE_HEAD

.set VE_HEAD = VE_USART_RX_MASK
XT_USART_RX_MASK:

.dw PFA_DOVARIABLE
PFA_USART_RX_MASK:

.dw usart_rx_mask

This provides the words USART_RX_DATA USART_RX_IN USART_RX_MASK for our usage. Alternately
we could setup our own variables and replace rx-isr with a version looking at them.

6. handling an incoming byte according to MPC-mode

UCSRA_FE0
UCSRA_DOR0 or
UCSRA_UPE0 or constant UCSRA_RX_ERR
: mpc? UCSRA c@ UCSRA_MPCM0 and ;
: rx-err? UCSRA c@ UCSRA_RX_ERR and ;
: rx-store (udata --)
USART_RX_DATA USART_RX_IN c@ dup >r
+ !
r> 1+ USART_RX_MASK and USART_RX_IN c!

;
: mpc-rx-isr
rx-err? 0= if

UDR0 c@ \ -- udata
mpc? if

stationID = if
-mpc7

then
else

rx-store
then

then
;

The new word command:mpc-rx-isr will inspect incoming data according to whether we are in MPC mode
or not. It requires the node address in the value stationID as defined before.

4.1. Nodes on a RS485 Bus 57

AmForth Documentation, Release 6.5

7. string everything together

In order to use all of the above we basically need to switch it on (and off):

: +rs485.mpc
['] prompt_rd is p_rd \ overwrite p_rd
+rs485
['] mpc-rx-isr USART0__RXAddr int! \ overwrite usart_rx_isr
-emit
+mpc7

;

: -rs485.mpc
['] (p_rd) is p_rd
['] usart_rx_isr USART0__RXAddr int!
-rs485
-mpc7
+emit

;

When using this in a turnkey word, make sure to disable emit before calling the original word
applturnkey, because otherwise the output of ver will be written to the bus.

: run-turnkey
-emit
applturnkey
+rs485.mpc

\ more initialization here

\ begin
\ your periodic work goes here
\ again
;

We are all ready to go. Please note that you need some means to send 0x80 | 0xStationAddress to the
bus to address the desired node. Once connected you need to issue +emit, and only after that the ok-prompt will
show up.

6.8 going to quiet mode on unparsable input

After everything worked thus far I found out, that sometimes more than one controller on the bus will be awake
receiving data and acting on it. Most of the time this would result in error messages being sent to the bus, which in
turn will create another round of error messages. I called this the echo loop. I did not find out, what really caused
this behaviour, but instead I decided: whenever a node receives illegible input that cannot be handled properly, the
node shall return to mpc quiet mode and not write any error messages at all.

The desired behaviour is a fairly fundamental change to the command loop, however, it is easy to install thanks to
the availability of recognizers.

Any input will be parsed by a list of recognizers, the first to understand the input will trigger the corresponding
work. The last in the list will be the one to possibly issue an error message. So we create a new recognizer and
insert it into the list of recognizers before the one issueing error messages.

First we need to load the word recognizer:

include lib/recognizer.frt

After that we create a table holding 3 execution tokens. The first is to be called at runtime, the second at compile
time, and the third during a postpone operation.

:noname -emit +mpc7 ; \ at runtime call the equivalent of ~end
' noop \ nothing to do at compile time

58 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

:noname type -48 throw ; \ postpone would be an error
recognizer: r:quiet

The parsing word does basically nothing. If this recognizer is called, rec:word and rec:num have not been
able to handle the input. So we simply drop the references to the unhandled input before the call into an entry of
the newly created table r:quiet.

: rec:quiet (addr length -- t/f) drop drop r:quiet ;

Registering and deregistering the new recognizer is a little involved, because we want to place it at the last position
— if the last recognizer fails, the content of r:fail is called. After some fiddling, I decided to compare the last value
with the one to be inserted or removed, such that repeated calls to “+rec:quiet” or “-rec:quiet” will not cause a
problem.

: +rec:quiet
['] rec:quiet \ -- r0
forth-recognizer get-recognizers \ -- r0 r1 r2 2
dup pick \ -- r0 r1 r2 2 r1
['] rec:quiet <> if \ -- r0 r1 r2 2
1+
forth-recognizer set-recognizers

else
drop

then
;

: -rec:quiet
forth-recognizer get-recognizers \ -- r0 r1 r2 3
dup pick
['] rec:quiet = if
1- forth-recognizer set-recognizers drop

else
0 ?do drop loop

then

;

+rec:quiet needs to be called in +rs485.mpc and similar for -rec:quiet.

$28 constant USART0__RXAddr
: +rs485.mpc

['] prompt_rd is p_rd \ overwrite p_rd
+rs485
['] mpc-rx-isr USART0__RXAddr int! \ overwrite usart_rx_isr
+rec:quiet
-emit
+mpc7

;

: -rs485.mpc
['] (p_rd) is p_rd
['] usart_rx_isr USART0__RXAddr int!
-rec:quiet
-rs485
-mpc7
+emit

;

6.9 turnkey

We are done. We can now put this together in a function to be called at system boot. The controller will imme-
diately switch off any output and go to quiet mpc mode. As such the controller will behave well on a bus with

4.1. Nodes on a RS485 Bus 59

AmForth Documentation, Release 6.5

possibly other nodes.

: run-turnkey
-emit
applturnkey
+rs485.mpc

;

Please note that -emit must be called before applturnkey, because the later does call ver producing the
well known output

amforth 6.3 ATmega644P ok

or similar. But we do not want to write anything on the bus unless explicitly asked to do so.

7 creating a node

While the above implementation is complete, it may not be obvious, how to create a sensor node with all the
required bits around it. So at least the description of a working example seems needed.

In my case the collector is a perl script, which will periodically address a list of nodes and for each of these

• write the address byte 0x80 | addr to the bus

• write +emit after that (no echo characters expected)

• wait for the ok prompt

• write ~data to the bus (waiting for each echo character, since those are coming from the controller now)

• read all the characters which come as an answer, e.g.

__Q 42:0005 4200:0 4201:0 4202:0 4203:0 C-- ok

or

__Q 7F:0005 7F01:3,+19.50,+19.50,+19.50 7F02:3,514,516,518 C-- ok

• write ~end to the bus (again waiting for each echo character)

The answer string is then parsed into pieces, and individual measurements are then inserted into a database table.

The __Q and C-- tokens were inserted only to make parsing simpler. The second token consists of
stationID:softwareVersion, both as a hex number. Tokens after that are either sensorID:Counter
or sensorID:N,xlow,xmean,xhigh collections. Other formats are certainly possible, this is just my choice
based on the decision its all plain ascii.

This represents the high level view of the node as seen from the network (aka bus). So the words

• +emit

• ~data

• ~end

must be available on the node.

So there are at least two ways to make ~data report meaningful output.

1. interrupt only sensors

If all sensors can be handled by appropriate interrupt service routines, those shall fill the variables with
meaningful values. ~data will then only read those values and report them over the bus.

This setup is used for counters or meters. In my case the electricity meter has a so called S0 interface with
two pins + and -. + must be pulled high by a pullup resistor and connected to a controller pin. The meter
will short the + to the - pin for a few milliseconds thus reporting one count. If the pin at the controller
either can react on such a pulse by issueing an interrupt (external or pin change interrrupt) or if the pin is

60 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

connected to a counter register, that’s all there needs to be done. Every low pulse will increment the value
reported by ~data.

2. using the multitasker to do the work in the background

If there is more work to be done, either on event or periodically, then using the multitasker is an option.
There are only two tasks involved: the task serving the command line and the task periodically collecting
sensor readouts into variables. The handling of sensors or events could be spread over more tasks, if needed
for some reason.

If ~data is called on the command line, it will report the stored values and optionally reset the variables.

7.1 counter sensor

As an example I will outline the needed bits for a counter node. It will count active-low pulses on one of 4 pins.
The controller is an atmega168, which features pin-change-interrupts on all port pins. The pulses are produced
by an electricity meter with a so called S0 interface. This particular electricity meter will produce 1000 counts per
kWh consumed, each count consists of pulling pin + down for 90 milliseconds.

The pin change interrupt will trigger on falling and rising edges. There is only one interrupt for a group of eight
pins (one port). So the interrupt service routine needs to find out, which pin exaclty triggered the interrupt, and
whether a falling or rising edge did occur. On the falling edge we need to increment the associated counter for this
pin.

\ --- data handling -------------------------
variable Count 4 cells allot
variable Pins_old
: pci1_isr

ledsensor high
PINC c@ $0F and \ -- pins
Pins_old c@ \ -- pins alt

4.1. Nodes on a RS485 Bus 61

AmForth Documentation, Release 6.5

over \ -- pins alt pins
xor \ -- pins diff
dup if \ -- pins diff

4 0 do \ for each (consequtive input) pin
dup 1 i lshift and if \ . bit one changed?

over 1 i lshift and 0= if \ . leading edge?
1 Count i cells + +! \ . increment

then
then

loop

then
(diff) drop
(pins) Pins_old c!
ledsensor low

;
: +pci1

$0F PCMSK1 c! \ pcint 8..11 active
$02 PCICR c! \ pci1 active
$02 PCIFR c! \ clear PCI1, just in case
PINC c@ $0F and Pins_old !
['] pci1_isr PCINT1Addr int!

;
: -pci1

$00 PCICR c!
$02 PCIFR c! \ clear PCI1, just in case

;

The function ~data will then read the counter and report the value found as a plain ascii string on the serial
interface. No provisions are taken to implement any access locking, reading the two bytes of the counter might
result in inconsistent values.

\ counters are expected signed. A rollover can then be detected
\ and distinguished from restart of the controller.
\ therefore '.' not 'u.' in data.ls
: data.ls

4 0 do
space stationID @ >< i + &4 hex u0.r colon Count i cells + @ decimal .

loop
;
: ~data

leddata high \ fixme: leddata

." __Q" \ datagram start

.id+ver \ stationID + swVersion
data.ls
." C--" \ datagram end
leddata low

;

Since data is updated using an interrrupt service routine only, the available command loop is available to service
any requests from the rs485–serial connection. If work has to be done outside the interrupt service routine, a
multitasker can be used to run two tasks: one to read and process sensor data, and another one to run the command
loop.

8 The somtimes-not-so-obvious things

As one of my lecturers kept saying: **Afterwards** everything is obvious. However, the path to obviousness can
be long and windy at times.

62 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

1. Always provide a jumper to optionally disconnect the RX pin of the transceiver, IF you want to keep the
existing RS232 transceiver working.

2. Consider adding jumpers to disconnect the bus. This is occasionally useful.

There is probably more to be said ...

9 Finally

Like always this work would not have been possible without substantial help from others. Special thanks go
to Matthias Trute for amForth, for providing valuable feedback and picking up suggestions; Lubos Pekny for
proving, that it can be done; the members of the amforth-devel mailing list, the weekly IRC round and of the
German “Forth Gesellschaft e.V.”; countless authors of documentation, code, or processes for all the countless
pieces of software that comprise my workstation setup, e.g. bash, emacs and perl to name just three.

10 References

1. net4801 single board computer running the collector

• http://www.soekris.com

2. Lubos Peknys mFC project using rs485 and mpc mode highly inspired this code and project

• http://www.forth.cz

3. Pavel Pisa, implementing a 9-bit microLAN

• http://cmp.felk.cvut.cz/~pisa/papers/pi-ulan-prot.pdf

• http://ulan.sourceforge.net/

Date/Time to unix time and back

Author Erich Wälde

Contact amforth-devel@lists.sourceforge.net

Date 2015-11-11

To solve a particular problem with clocks, I decided to use epoch seconds (aka unix time). So this recipe demon-
strates a working implementation. For starters we ask date for a current time stamp in epoch seconds:

$ date +%s
1446650000

The conversion back can be done, too:

$ date -u -d @1445566000
Fri Oct 23 02:06:40 UTC 2015

So we can produce test cases and verify or work.

leapyear?

Along the way we need to decide, whether a given year is a leap year or not. The current rule says: If the year is
a multiple of 400, it is. Otherwise If it is a multiple of 100, it is not. Otherwise if it is a multiple of 4, it is a leap
year, otherwise it’s not. The code for this function takes the top of stack element, applies the rules and returns a
true/false flag to the stack:

4.2. Date/Time to unix time and back 63

http://www.soekris.com
http://www.forth.cz
http://cmp.felk.cvut.cz/~pisa/papers/pi-ulan-prot.pdf
http://ulan.sourceforge.net/
mailto:amforth-devel@lists.sourceforge.net

AmForth Documentation, Release 6.5

: leapyear? (yyyy -- t/f)
dup &4 mod 0=
over &100 mod 0<> and
swap &400 mod 0= or

;

A small amount of testing has never done any harm, so we load the corresponding module
lib/forth2012/tester/tester-amforth.frt and feed a hand full of tests to the controller after that.

decimal
t{ 1970 leapyear? -> 0 }t
t{ 1972 leapyear? -> -1 }t
t{ 1999 leapyear? -> 0 }t
t{ 2000 leapyear? -> -1 }t
t{ 2001 leapyear? -> 0 }t
t{ 2004 leapyear? -> -1 }t
t{ 1900 leapyear? -> 0 }t
t{ 3900 leapyear? -> 0 }t
t{ 3996 leapyear? -> -1 }t
t{ 4000 leapyear? -> -1 }t

Running this code should list all tests as passed. This increases my confidence into the code — I can highly
recommend test cases!

Manual conversion from epoch seconds to UT

We shall try to convert the value from the first example above back into common date/time format. 1445566000
is greater than 65536 == 216

So with AmForth we need to use variables 2 cells wide. The function ud/mod (division with remainder) will help
us with the calculation.

decimal
1445566000. 60 ud/mod .s
3 367 41054 40 ok

40 is the correct value for seconds (remainder), the large double length number is the original number divided by
60, thus the time in full minutes.

60 ud/mod .s
4 6 8330 6 40 ok

6 is the correct value for minutes, the large number is the time in full hours. Division by 24 will lead us on:

24 ud/mod .s
5 0 16731 2 6 40 ok

In other words, the initial value 1445566000 in epoch seconds represents 02:06:40 UT time at 16731 days
of the epoch, that is after 1970-01-01

So we need to convert the number of days into the correct number of years and months, including handling of leap
years. It would be nice to have functions similar to ud/mod however, we need to come up with them ourselves.

It should be noted that we need to extract the correct number of years first by subtracting days, and then convert
the remaining days into months and days.

How many full years are in N days?

First we define a constant to hold the begin of the epoch. And after that a funny named function, which returns
the length of a given year in days. These are just to make the remaining code more readable.

64 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

#1970 constant __Epoch
: 365+1 (year -- 365|366)

#365 swap leapyear? if 1+ then
;

Then we define years/mod which extracts the full years from a given number of days. It returns the correspond-
ing year and the remainder of days. There is no magic in this function, just a plain book keeping exercise. We
need to correctly account for leap years, the loop starts with the first year of the epoch, 1970.

: years/mod (T/day -- years T/day')
dup #365 u< 0= if \ -- T

__Epoch swap \ -- year T
begin

over 365+1
-
swap 1+ swap \ -- T-365 year+1
over 365+1 \ -- year' T' 365
over swap \ -- year' T' T' 365

u< until
else
__Epoch swap

then
;

There might be more elegant solutions, however, this one works as the following tests should demonstrate.

t{ 0 years/mod -> 1970 0 }t
t{ 1 years/mod -> 1970 1 }t
t{ 31 years/mod -> 1970 31 }t
t{ 364 years/mod -> 1970 364 }t
t{ 365 years/mod -> 1971 0 }t
t{ 366 years/mod -> 1971 1 }t
t{ 730 years/mod -> 1972 0 }t
t{ 1094 years/mod -> 1972 364 }t
t{ 1095 years/mod -> 1972 365 }t
t{ 1096 years/mod -> 1973 0 }t
t{ 1097 years/mod -> 1973 1 }t
t{ 11322 years/mod -> 2000 365 }t
t{ 11323 years/mod -> 2001 0 }t

Continuing the above conversion yields:

> .s
5 0 16731 2 6 40 ok
d>s years/mod .s
5 295 2015 2 6 40 ok
>

In the 16731 days are 45 full years, so the correct value for year is 2015 as expected. There are 295 days in that
year left.

How many full months are in N days?

A similar exercise of book keeping leads us to extract the correct number of months from the remainder above :
295 .

So first I decided to create a list of accumulated days at the end of the month. The list covers common years, leap
years need to be accounted for differently. Again, there is no particular magic. We search the list from its far end
down until the number from the list is smaller than the remaining days given as argument.

: months/mod (year T/day -- year month T/day')
dup 0= if

drop 1 1

4.2. Date/Time to unix time and back 65

AmForth Documentation, Release 6.5

else
&12 swap \ -- year month T
begin

over __acc_days + @i \ AmForth
\ over cells __acc_days + @ \ gForth

\ -- year month T acc_days[month]
\ correct acc_days for leap year and months > 1 (January)
3 pick leapyear? 3 pick 1 > and if 1+ then
over over swap \ -- year month T acc_days[month] acc_days[month] T
u>

while \ -- year month T acc_days[month]
drop swap 1- swap

\ -- year month-1 T
repeat \ -- year month' T acc_days[month']
- \ -- year month' T-acc_days[month']
swap 1+
swap 1+

then
;

We test this with the ongoing conversion:

> .s
5 295 2015 2 6 40 ok
> months/mod .s
6 23 10 2015 2 6 40 ok
> swap rot .s
6 2015 10 23 2 6 40 ok
>

The result is as expected. More tests can be applied:

t{ 1970 0 months/mod -> 1970 1 1 }t
t{ 1970 1 months/mod -> 1970 1 2 }t
t{ 1970 30 months/mod -> 1970 1 31 }t
t{ 1970 31 months/mod -> 1970 2 1 }t
t{ 1970 59 months/mod -> 1970 3 1 }t
t{ 1970 90 months/mod -> 1970 4 1 }t
t{ 1970 120 months/mod -> 1970 5 1 }t
t{ 1970 151 months/mod -> 1970 6 1 }t
t{ 1970 181 months/mod -> 1970 7 1 }t
t{ 1970 212 months/mod -> 1970 8 1 }t
t{ 1970 243 months/mod -> 1970 9 1 }t
t{ 1970 273 months/mod -> 1970 10 1 }t
t{ 1970 304 months/mod -> 1970 11 1 }t
t{ 1970 334 months/mod -> 1970 12 1 }t
t{ 1970 364 months/mod -> 1970 12 31 }t
t{ 1996 0 months/mod -> 1996 1 1 }t
t{ 1996 1 months/mod -> 1996 1 2 }t
t{ 1996 30 months/mod -> 1996 1 31 }t
t{ 1996 31 months/mod -> 1996 2 1 }t
t{ 1996 60 months/mod -> 1996 3 1 }t
t{ 1996 91 months/mod -> 1996 4 1 }t
t{ 1996 121 months/mod -> 1996 5 1 }t
t{ 1996 152 months/mod -> 1996 6 1 }t
t{ 1996 182 months/mod -> 1996 7 1 }t
t{ 1996 213 months/mod -> 1996 8 1 }t
t{ 1996 244 months/mod -> 1996 9 1 }t
t{ 1996 274 months/mod -> 1996 10 1 }t
t{ 1996 305 months/mod -> 1996 11 1 }t
t{ 1996 335 months/mod -> 1996 12 1 }t
t{ 1996 365 months/mod -> 1996 12 31 }t

This implementation may seem somewhat convoluted. I’m sure there are more elegant solutions possible, however,

66 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

readable code is highly valued, too. Passing the tests increases our confidence.

Converting Epoch Seconds to UT

At this point we have the tools to convert unix time (epoch seconds) into the well known and much better readable
date/time format.

: d>s drop ;
: s>ut (d:EpochSeconds -- sec min hour day month year/UT)

#60 ud/mod \ -- sec d:T/min
#60 ud/mod \ -- sec min d:T/hour
#24 ud/mod \ -- sec min hour d:T/day
d>s
years/mod \ -- sec min hour year T/day
months/mod \ -- sec min hour year month day
swap rot \ -- sec min hour day month year

;

A fairly big list of test cases is nice. The last test will fail, because it overflows the size of 2variable. The sec-
ond to last test will succeed, because I use unsigned values for unix time — contrary to to the standard definition.
So this implementation is not impaired at the 2038 overflow and keeps working until 2106.

t{ 0. s>ut -> 0 0 0 1 1 1970 }t
t{ 3600. s>ut -> 0 0 1 1 1 1970 }t
t{ 86400. s>ut -> 00 00 00 02 01 1970 }t
t{ 31536000. s>ut -> 00 00 00 01 01 1971 }t
t{ 100000000. s>ut -> 40 46 09 03 03 1973 }t
t{ 951782400. s>ut -> 00 00 00 29 02 2000 }t
t{ 1000000000. s>ut -> 40 46 01 09 09 2001 }t
t{ 1044057600. s>ut -> 00 00 00 01 02 2003 }t
t{ 1044144000. s>ut -> 00 00 00 02 02 2003 }t
t{ 1046476800. s>ut -> 00 00 00 01 03 2003 }t
t{ 1064966400. s>ut -> 00 00 00 01 10 2003 }t
\ leap year, end of February
t{ 1077926399. s>ut -> 59 59 23 27 02 2004 }t
t{ 1077926400. s>ut -> 00 00 00 28 02 2004 }t
t{ 1077926410. s>ut -> 10 00 00 28 02 2004 }t
t{ 1078012799. s>ut -> 59 59 23 28 02 2004 }t
t{ 1078012800. s>ut -> 00 00 00 29 02 2004 }t
t{ 1078012820. s>ut -> 20 00 00 29 02 2004 }t
t{ 1078099199. s>ut -> 59 59 23 29 02 2004 }t
t{ 1078099200. s>ut -> 00 00 00 01 03 2004 }t
t{ 1078099230. s>ut -> 30 00 00 01 03 2004 }t
t{ 1078185599. s>ut -> 59 59 23 01 03 2004 }t
t{ 1096588800. s>ut -> 00 00 00 01 10 2004 }t
t{ 1413064016. s>ut -> 56 46 21 11 10 2014 }t
t{ 1413064100. s>ut -> 20 48 21 11 10 2014 }t
\ 31 bit max
t{ 2147483648. s>ut -> 08 14 03 19 01 2038 }t
t{ 2147483649. s>ut -> 09 14 03 19 01 2038 }t
\ 32 bit max
t{ 4294967295. s>ut -> 15 28 06 07 02 2106 }t
\ this is still working because I use
\ Epoch seconds as 32 bit *unsigned* integer
\ in disagreement with the standard definition
\ overflow here :-) with amForth, not gForth
t{ 4294967296. s>ut -> 16 28 06 07 02 2106 }t

The interested reade will note at this point, that time zones were not considered up to this point.

4.2. Date/Time to unix time and back 67

AmForth Documentation, Release 6.5

Converting UT back to Epoch Seconds

The inverse function is another book keeping exercise. Beginning with the year we convert the entries on the stack
to days and then to increasingly smaller units, adding up the appropriate values as needed.

: ut>s (sec min hour day month year -- d:T/sec)
\ add start value T=0
0 over \ -- sec min hour day month year T=0 year
__Epoch \ -- sec min hour day month year T year Epoch
?do

i 365+1 +
loop \ -- sec min hour day month year T/days
2 pick 1- \ -- sec min hour day month year T/days month-1
__acc_days + @i \ -- sec min hour day month year T/days acc_days[month] \ amForth

\ cells __acc_days + @ \ -- sec min hour day month year T/days acc_days[month] \ gForth
+ \ -- sec min hour day month year T/days
swap \ -- sec min hour day month T/days year
leapyear? rot 2 > and if 1+ then
\ \ -- sec min hour day T/days
swap 1- + \ -- sec min hour T/days
s>d
#24 1 m*/ rot s>d d+ \ -- sec min T/hours
#60 1 m*/ rot s>d d+ \ -- sec T/minutes
#60 1 m*/ rot s>d d+ \ -- T/sec

;

More interesting test cases taken from Wikipedia:

t{ 20 33 03 18 05 2033 ut>s 2000000000 }t
t{ 00 40 02 14 07 2017 ut>s 1500000000 }t
t{ 52 49 05 18 07 2029 ut>s $70000000 }t
t{ 36 25 08 14 01 2021 ut>s $60000000 }t
t{ 20 01 11 13 07 2012 ut>s $50000000 }t
t{ 40 46 09 03 03 1973 ut>s 100000000 }t

Time Zone CET/CEST

In order to handle time zones I decided to define constants providing the offset to UT in seconds. This information
is added to the stack before the date and time values.

#3600 constant CET
#7200 constant CEST

: dt>s (tzoffset sec min hour day month year -- d:epochsec)
ut>s
rot s>d d-

;

And a last round of test cases:

t{ CET 0 0 0 1 1 1970 dt>s -> -3600. }t
t{ CET 0 0 1 1 1 1970 dt>s -> 0. }t
t{ 0. s>ut -> 0 0 0 1 1 1970 }t
t{ CET 59 59 23 1 1 1970 dt>s -> 82799. }t
t{ CET 59 59 0 02 01 1970 dt>s -> 86399. }t
t{ CET 0 0 1 2 1 1970 dt>s -> 86400. }t
t{ 86400. s>ut -> 00 00 00 02 01 1970 }t
t{ CET 1 0 1 2 1 1970 dt>s -> 86401. }t
t{ CET 59 59 23 31 1 1970 dt>s -> 2674799. }t
t{ CET 0 0 0 1 2 1970 dt>s -> 2674800. }t
t{ CET 1 0 0 1 2 1970 dt>s -> 2674801. }t
t{ CET 59 59 23 28 2 1970 dt>s -> 5093999. }t

68 Chapter 4. Commented Projects

AmForth Documentation, Release 6.5

t{ CET 0 0 0 1 3 1970 dt>s -> 5094000. }t
t{ CEST 30 15 12 1 6 1971 dt>s -> 44619330. }t
t{ CEST 6 3 17 12 10 2014 dt>s -> 1413126186. }t
t{ CEST 00 00 00 29 06 2000 dt>s -> 962229600. }t
t{ CET 00 00 00 29 01 2000 dt>s -> 949100400. }t
t{ CET 00 00 00 28 02 2000 dt>s -> 951692400. }t
t{ 951692400. s>ut -> 00 00 23 27 02 2000 }t
t{ CET 00 00 00 29 02 2000 dt>s -> 951778800. }t
t{ CET 0 0 1 1 1 1970 dt>s -> 0. }t
t{ 0. s>ut -> 0 0 0 1 1 1970 }t
t{ CET 0 0 1 29 2 1972 dt>s -> 68169600. }t
t{ 68169600. s>ut -> 0 0 0 29 2 1972 }t
t{ CET 00 00 01 28 02 1972 dt>s -> 68083200. }t
t{ 68083200. s>ut -> 00 00 00 28 02 1972 }t
t{ CEST 40 46 03 09 09 2001 dt>s -> 1000000000. }t
t{ 1000000000. s>ut -> 40 46 01 09 09 2001 }t
t{ CET 00 00 01 01 01 2004 dt>s -> 1072915200. }t
t{ 1072915200. s>ut -> 00 00 00 01 01 2004 }t

Happy Forthing.

Coinforth including an ARD101 Tutorial by Dennis Ruffer

Cranberry-net a remote sensing network for cranberry bogs, wetlands etc.by Andreas Wagner

A scientific paper: Use of Forth to Enable Distributed Processing on Wireless Sensor Networks

4.2. Date/Time to unix time and back 69

https://github.com/DRuffer/coinForth
https://github.com/DRuffer/coinForth/blob/master/doc/ARD101/ARD101.pdf
http://hub.darcs.net/pointfree/cranberry-net
http://www.complang.tuwien.ac.at/anton/euroforth/ef15/genproceedings/papers/peri.pdf

AmForth Documentation, Release 6.5

70 Chapter 4. Commented Projects

CHAPTER

FIVE

COOKBOOK

The Cookbook is a collection of small and not so small recipes. Every recipe is intended to deal with exactly one
task. It is a living document, so expect changes at any time.

Popular Boards

Arduino Hello World

The example demonstrates a blinking LED. Most arduino’s have one attached to the port Digital-13. For this
recipe, the amforth system is already loaded onto the ardiuno. Instructions to do it are in the User’s Manual.

To quickly test the hardware start a terminal (e.g. screen /dev/ttyACM0 38400) and enter the following commands
(assuming an Arduino Uno)

> $20 $24 c!
> $20 $25 c!
> $00 $25 c!

The LED turned on until the last command is executed. The character > is the command prompt, if you see it, you
can enter any commands. You’ll never enter that character yourselves. A command line can be up to 80 characters
long.

The commands above are pretty obscure. To make them easier to understand we define labels for some numbers,
so called constants:

> $25 constant PORTB
> $24 constant DDRB

The arduino uses its own numbering schema for pins, but for now we use the atmega one: digial-13 is the same as
bit 7 of port B. Port B has 8 pins and three registers to configure them. we need two of them: The Data Direction
Register (DDR) and the PORT (Output) Register. The third register is used for reading from the port (PIN).

The above commands can now be written as

> $20 DDRB c!
> $20 PORTB c!
> $00 PORTB c!

Technically the same but easier to read.

Next we do not want to enter all commands interactively. Forth has the reputation of an extendible command set.

Good forth coding style means to have many small words which do exactly one thing. Most forth commands are
built with only a handful other commands.

The first command in this example sets up the Data Direction Register DDR to configire the LED Port as an output
pin. In arduino sketch it would be:

71

AmForth Documentation, Release 6.5

void setup() {
pinMode(13, OUTPUT);

}

The same in Forth is:

> : led-init $80 DDRB c! ;
ok

>

With this command line the interpreter learns a new command: led-init. This command can be called imme-
diately.

> led-init
ok

>

It writes the number 128 (hex 80) to the register DDRB (hex 24) as defined above. This makes the 7th bit of
PORTB an Output pin.

Calling our newly defined word does not change anything visible. But with the next word, the LED will turn on:

: led-on $80 PORTB c! ;

Here the 7th bit will be set to 1, and that makes the led to be connected to VCC (5V) and it will turn on (the LED
is connected to ground already).

If the led-on command does not turn on the LED just call the led-init command (again). The led-init is needed
after an reset or power cycle as well.

Now that the led is active, we want a command to turn it off. One solution is to repeat the command from above:
0 PORTB c!. Smarter is a new command word:

: led-off 0 PORTB c! ;

You can now use the newly defined commands to turn the led on and off:

> led-on led-off led-on led-off
ok

>

Since there is no timing yet, you may not even see the led flash, amforth is pretty fast.

Our next word will simplify this and gives the real blink experience:

: led-blink led-on 500 ms led-off 500 ms ;

Calling this command will turn on the led, waits for half a second, turn it off again and waits another half a second
before returning to the command prompt.

With this command you can blink the led a few times

> led-blink led-blink led-blink
ok

>

The led will blink for a 3 seconds before the ok and returning to the command prompt.

To make it blink “forever”, we define another command word:

: blink-forever
." press any key to stop "
begin

led-blink
key?

until
key drop

;

72 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

Since this is our first command which needs more than 1 line, the interpreter acts more complex. It changes the
command prompt until the end of the command definition is reached (the command ;) The ouput in the terminal
window looks like

> : blink-forever
ok." press any key to stop"
okbegin
ok led-blink
ok key?
okuntil
okkey drop
ok;
ok

>

This word first prints some text (“press any key to stop”) and starts a loop. This loop lets the led blink once and
checks for a keystroke. If no key is pressed, the loops is repeated. If a key is pressed, the loop is terminated. The
last two commands are housekeeping: get the key pressed and forget it. Otherwise the key pressed would be the
first character of the next command line.

The advantage of defining many words is that you can test them immediately. Thus any further code can rely on
words already being tested. That makes debugging a lot easier. The drawback of that many words? You need to
remember their names.

Where to go next

This example is very basic. Next steps may involve library code like Digital Ports. Related to it are the Shells And
Upload for files with forth code.

More Arduino related stuff is in Arduino Analog.

Arduino Analog

Accessing the Analog ports for reading needs the files lib/bitnames.frt for basic rou-
tines, the file appl/arduino/blocks/ports-arduinotype.frt for the actual ports and
appl/arduino/blocks/wiring_analog.frt for the code to do the work. After loading the
files, the Analog Conversion Module has to be initialized with the adc.init. This has to be done after a reset
and power cycle as well.

Now it is time to connect some hardware to one of the ports labled Analog In. Once this is done, some simple
commands will work:

> analog.1 adc.get u.
67 ok
>

The ADC on the ATmega has a resolution of 10 bits, thus a number between 0 and 1023 can be expected as the
result.

Note that the ADC module needs some time between two conversion. If you do it too fast, expect malfunctions or
even crashes. A simple 50 ms circumvent most problems.

\ continuously read the adc port
\ and print the new value if it
\ has changed considerably since last round
\ note the 50ms delay to keep things
\ run smoothly. A key press will
\ return to the command prompt
: analog-test

0
begin

(-- old)

5.1. Popular Boards 73

AmForth Documentation, Release 6.5

analog.1 adc.get (-- old new)
swap over (-- new old new)
- abs 6 > (-- new f)
50 ms (wait...)
if dup u. then (-- new)
key? (-- new f)

until
key drop
drop ;

AVR Butterfly

The Butterfly Demo board from Atmel uses an Atmega169 controller. It uses the internal 8MHz oscillator which
can be calibrated with the external 32kHz quartz.

amforth uses the serial connection (3pin connection on the left side) as it’s terminal.

amforth completely replaces the flash content. It overwrites the bootloader. You definitely need ISP or JTAG
to upload amforth to the controller. Afterwards the serial programming does not work anymore. You’ve been
warned!

A lot of useful code and examples how to use the various parts of the butterfly can be found at the wiki of
the German FIG Forth e.V. at www.forth-ev.de/wiki/doku.php/projects:avr:hilfsmittel. Basic Knowledge of the
German language is required.

The 32 kHz external quartz can be used to generate a timer tick. The following definition may help:

\ implement a timer with the 32kHz oszillator
decimal
\ timer/counter subsystem
182 constant ASSR
\ timer/counter2
179 constant OCR2A
178 constant TCNT2
176 constant TCCR2A
112 constant TIMSK2
75 constant GPIOR2
55 constant TIFR2

4 constant OC2addr
5 constant OVF2addr

variable tick

\ increment the tick variable
: timer2isr (--)

1 tick +!
;

\ initialize and start the timer.
: +32kHz (--)

\ Set timer 2 to asyncronous mode (32.768KHz crystal)
1 3 lshift ASSR c!
\ Start with prescaler 128
1 0 lshift
1 2 lshift or TCCR2A c!
\ Wait until timer 2's external 32.768KHz crystal is stable
begin

ASSR c@
1 2 lshift \ TCN2UB
1 0 lshift or \ TCR2UB
1 1 lshift or \ OCR2UB
and

74 Chapter 5. Cookbook

http://www.forth-ev.de/wiki/doku.php/projects:avr:hilfsmittel

AmForth Documentation, Release 6.5

until
0 tick !
\ use overflow interrupt
['] timer2isr OVF2addr int!
1 TIMSK2 c!

;

: -32kHz
\ Turn off interrupt
0 TIMSK2 c!
\ Turn off timer 2 asynchronous mode
ASSR c@
1 3 lshift invert and ASSR c!

;

Texas Instruments LaunchPad 430

Texas Instruments has the MSP430 microcontroller familiy. It is completely different to the AVR Atmegas. Am-
forth recently started to support it as well. The Forth kernel is (almost) the same, many tools like the amforth-shell
work for both too. Since the MSP430 is new, bugs and other oddities are more likely than for the Atmegas.

The sources are made for the naken_asm assembler.

Playing with the Launchpad

The LEDs can be used as follows

: red:init 1 34 bm-set ;
: red:on 1 33 bm-set ;
: red:off 1 33 bm-clear ;
: green:init 64 34 bm-set ;
: green:on 64 33 bm-set ;
: green:off 64 33 bm-clear ;

Example for (machine) code (instead of the forth code above)

code red:init $D3D2 , $0022 , end-code
code red:on $D3D2 , $0021 , end-code
code red:off $C3D2 , $0021 , end-code

There are many ways to wait, e.g. do other things while waiting (PAUSE). A simple approach is do nothing:

: ms 0 ?do 1ms loop ;

Now let the red LED blink ONCE

: blink red:on 100 ms red:off 100 ms ;

Test it! Now! The compiled version is much faster than the sequence “1 33 bm-set 1 33 bm-clear” (watch the red
flashes). Next is to let it blink until a key is pressed

: blink-forever begin blink key? until key drop ;

A big difference to the AVR’s is that amforth for the MSP430 needs an explicit save command to make all
writes to the dictionary permanent. Otherwise every changes are lost at cold or reset and moreover a re-flash is
necessary.

Hardware Setup

At the first glance, the hardware setup is trivial: Connect your Launchpad to the USB port of your PC. It may take
a while until the modem manager detects that it is not a device it can handle. Now open a terminal (I use minicom)

5.1. Popular Boards 75

http://www.mikekohn.net/micro/naken_asm.php

AmForth Documentation, Release 6.5

and set the serial port settings: /dev/acm0, 9600 and 8N1 without flow control.

MSP430 G2553

The mspdebug to actually program the controller uses the rf2500 protocol:

> mspdebug rf2500 "prog launchpad430.hex "
MSPDebug version 0.22 - debugging tool for MSP430 MCUs
Copyright (C) 2009-2013 Daniel Beer <dlbeer@gmail.com>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Trying to open interface 1 on 007
rf2500: warning: can't detach kernel driver: No data available
Initializing FET...
FET protocol version is 30394216
Set Vcc: 3000 mV
Configured for Spy-Bi-Wire
fet: FET returned error code 4 (Could not find device or device not supported)
fet: command C_IDENT1 failed
Using Olimex identification procedure
Device ID: 0x2553
Code start address: 0xc000
Code size : 16384 byte = 16 kb
RAM start address: 0x200
RAM end address: 0x3ff
RAM size : 512 byte = 0 kb

Device: MSP430G2xx3
Number of breakpoints: 2
fet: FET returned NAK
warning: device does not support power profiling
Chip ID data: 25 53
Erasing...
Programming...
Writing 424 bytes at 0200...
Writing 188 bytes at 1000...
Writing 4096 bytes at e000...
Writing 4008 bytes at f000...
Writing 32 bytes at ffe0...
Done, 8748 bytes total

Your Amforth terminal session (minicom) should now print some readable characters like

+-------------------------------------
| amforth 5.6 MSP430G2553 8000 kHz
| >
|

Thats all. If nothing has happened look for error messages in the mspdebug window. Try replugging the launchpad.
Some more information are in the Amforth with Raspberry PI recipe.

You can reprogram the controller via USB whilst the terminal session is still active. In this case you’ll see repeated
welcome strings from amforth due to some resets.

+-------------------------------------
| amforth 5.6 MSP430G2553 8000 kHz
| > amforth 5.6 MSP430G2553 8000 kHz
| > amforth 5.6 MSP430G2553 8000 kHz
| > amforth 5.6 MSP430G2553 8000 kHz
| > amforth 5.6 MSP430G2553 8000 kHz
| >
|

76 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

MSP430 F5529 & FR5969

Thess chips require the libmsp430.so from TI which is (at least with ubuntu) not part of the mspdebug package. I
used the one from Energia and copied it into /usr/lib.

$ mspdebug tilib "prog amforth-5529.hex"
MSPDebug version 0.22 - debugging tool for MSP430 MCUs
Copyright (C) 2009-2013 Daniel Beer <dlbeer@gmail.com>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

tilib: can't find libmsp430.so: libmsp430.so: cannot open shared object file: No such file or directory

If the following error message is displayed

tilib: MSP430_Initialize: Interface Communication error (error = 35)

the modem manager is still using the serial port. Just wait for it.

The next error message is potentially more troublesome

mspdebug tilib "prog amforth-5529.hex"
MSPDebug version 0.22 - debugging tool for MSP430 MCUs
Copyright (C) 2009-2013 Daniel Beer <dlbeer@gmail.com>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

MSP430_GetNumberOfUsbIfs
MSP430_GetNameOfUsbIf
Found FET: ttyACM0
MSP430_Initialize: ttyACM0
FET firmware update is required.
Re-run with --allow-fw-update to perform a firmware update.
tilib: device initialization failed

Now you have to update the programming module on the launchpad. Be aware that this is a potentially dangerous
action, it may seem to brick the chip (if not, you’re lucky) if something goes wrong:

$ mspdebug tilib --allow-fw-update
MSPDebug version 0.22 - debugging tool for MSP430 MCUs
Copyright (C) 2009-2013 Daniel Beer <dlbeer@gmail.com>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

MSP430_GetNumberOfUsbIfs
MSP430_GetNameOfUsbIf
Found FET: HID_FET
MSP430_Initialize: HID_FET
FET firmware update is required.
Starting firmware update (this may take some time)...
tilib: MSP430_FET_FwUpdate: MSP-FET / eZ-FET recovery failed (error = 73)
tilib: device initialization failed

In this case try running the command as root e.g. via sudo

$ sudo mspdebug tilib --allow-fw-update
[sudo] password for <user>:
MSPDebug version 0.22 - debugging tool for MSP430 MCUs
Copyright (C) 2009-2013 Daniel Beer <dlbeer@gmail.com>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

MSP430_GetNumberOfUsbIfs
MSP430_GetNameOfUsbIf

5.1. Popular Boards 77

https://s3.amazonaws.com/energiaUS/energia-0101E0016-linux64.tgz

AmForth Documentation, Release 6.5

Found FET: HID_FET
MSP430_Initialize: HID_FET
FET firmware update is required.
Starting firmware update (this may take some time)...
Initializing bootloader...
Programming new firmware...

0 percent done
34 percent done
67 percent done

100 percent done
Update complete
Done, finishing...
MSP430_VCC: 3000 mV
tilib: MSP430_VCC: Internal error (error = 68)
tilib: device initialization failed

The error 68 signals “ok, I’m almost done”. Now re-run the same command to finally do the firmware update.
Note some subtle differences in the output like the HID_FET vs. ttyACM0.

$ sudo mspdebug tilib --allow-fw-update
MSPDebug version 0.22 - debugging tool for MSP430 MCUs
Copyright (C) 2009-2013 Daniel Beer <dlbeer@gmail.com>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

MSP430_GetNumberOfUsbIfs
MSP430_GetNameOfUsbIf
Found FET: ttyACM0
MSP430_Initialize: ttyACM0
FET firmware update is required.
Starting firmware update (this may take some time)...
Initializing bootloader...
Programming new firmware...

4 percent done
20 percent done
36 percent done
52 percent done
68 percent done
84 percent done

100 percent done
Update complete
Done, finishing...
MSP430_VCC: 3000 mV
MSP430_OpenDevice
MSP430_GetFoundDevice
Device: MSP430F5529 (id = 0x0030)
8 breakpoints available
MSP430_EEM_Init
Chip ID data: 55 29 18

Available commands:
= erase isearch power save_raw simio
alias exit load prog set step
break fill load_raw read setbreak sym
cgraph gdb md regs setwatch verify
delbreak help mw reset setwatch_r verify_raw
dis hexout opt run setwatch_w

Available options:
color gdb_loop
enable_bsl_access gdbc_xfer_size
enable_locked_flash_access iradix
fet_block_size quiet

78 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

gdb_default_port

Type "help <topic>" for more information.
Use the "opt" command ("help opt") to set options.
Press Ctrl+D to quit.

(mspdebug) <Ctrl-D>
MSP430_Run
MSP430_Close

If done properly the actions looks as follows

$ sudo mspdebug tilib --allow-fw-update
MSPDebug version 0.22 - debugging tool for MSP430 MCUs
Copyright (C) 2009-2013 Daniel Beer <dlbeer@gmail.com>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

MSP430_GetNumberOfUsbIfs
MSP430_GetNameOfUsbIf
Found FET: ttyACM0
MSP430_Initialize: ttyACM0
FET firmware update is required.
Starting firmware update (this may take some time)...
Initializing bootloader...
Programming new firmware...

75 percent done
84 percent done
84 percent done
91 percent done
96 percent done
99 percent done

100 percent done
100 percent done

Initializing bootloader...
Programming new firmware...

4 percent done
20 percent done
36 percent done
52 percent done
68 percent done
84 percent done

100 percent done
Update complete
Done, finishing...
MSP430_VCC: 3000 mV
MSP430_OpenDevice
MSP430_GetFoundDevice
Device: MSP430FR5969 (id = 0x012d)
3 breakpoints available
MSP430_EEM_Init
Chip ID data: 69 81 30

Available commands:
= erase isearch power save_raw simio
alias exit load prog set step
break fill load_raw read setbreak sym
cgraph gdb md regs setwatch verify
delbreak help mw reset setwatch_r verify_raw
dis hexout opt run setwatch_w

Available options:
color gdb_loop

5.1. Popular Boards 79

AmForth Documentation, Release 6.5

enable_bsl_access gdbc_xfer_size
enable_locked_flash_access iradix
fet_block_size quiet
gdb_default_port

Type "help <topic>" for more information.
Use the "opt" command ("help opt") to set options.
Press Ctrl+D to quit.

(mspdebug) <Ctrl-D>
MSP430_Run
MSP430_Close

Now your hardware is configured to upload the hexfiles from amforth

$ mspdebug tilib "prog amforth-5529.hex"

giving the amforth command prompt in your serial terminal

amforth 6.1 MSP430F5529 8000 kHz
> words
key? key emit? emit ...

Amforth with Raspberry PI

No, this recipe is not abot using amforth on the Raspberry PI, but use the RPi as the development platform for the
microcontrollers it supports.

Compiling amforth for the Atmegas requires the Atmel Assembler which runs only on some, widespread however,
platforms like Windows and x86 Linux with wine. It is however possible to use the avrdude program to flash the
controller.

The MSP430 variant got the full toolchain working. The necessary tools naken_asm and mspdebug work fine.

Installation

The setup has been tested with pidora, other linux’s should work the same way.

The mspdebug utility requires direct access to the USB port. This can be either achieved by running it as root or
(better) by adding a file /etc/udev/rules.d/46-TI-Launchpad.rules with the content (a single line)

ATTRS{idVendor}=="0451", ATTRS{idProduct}=="f432", MODE="0660", GROUP="plugdev"

Restart udev afterwards and re-plug the launchpad. The user account you’re using has to become a member of the
plugdev group. Check with id, re-login if necessary.

The naken_asm is installed from the sources. Just follow the instructions.

Other tools are the make utility (or ant), the editor and the terminal program.

General Code Examples

Defining and using Arrays

The traditional approach is the following:

create my-array 42 cells allot

This creates the dictionary entry named my-array and allocates 42 cells in RAM. BUT: the my-array dictionary
entry is not connected to the allocated RAM. The correct solution is:

80 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

variable my-array 42 cells allot

This makes the dictionary entry named my-array, sets up the link to the RAM address and allocates an additional
amount of 42 cells in RAM.

Forth 200x introduced a new word named Buffer:. With it the above code turns into

43 buffer: my-array

please note the different sizes! The buffer:-implementation allocates the exact number of bytes whereas the
variable version adds the given size parameter to the 1 cell it allocates anyways.

The use of the array is quite simple:

: my-array-@ cells my-array + @ ;
: my-array-! cells my-array + ! ;

Arrays of structures

This example uses structures. Structures can be used after including of the structures.frt file. First a hash
data structure consisting of two elements is defined. This structure is used to create an array of a few elements
afterwards.

begin-structure hash
field: hash.key
field: hash.value

end-structure

\ inspired by CELLS
\ (n -- size)
\ calculates the size of n items of the
\ type hash
: hash-cells hash * ;

\ define a hash-array
: hash:

hash-cells buffer:
does>
swap hash-cells +

;

The helper word hash-cells calculates the size of the data structure in terms of byes, just like the standard
word cells does it.

Now we’re using the words (using the amforth-shell). First define an array of 4 hash pairs. After that store a
key/value pair at a particular position and retrieve it again later.

(ATmega16)> 4 hash: my-hash
ok

(ATmega16)> 42 3 my-hash hash.key !
ok

(ATmega16)> 4711 3 my-hash hash.value !
ok

(ATmega16)> 3 my-hash hash.key @ .
42 ok

(ATmega16)> 3 my-hash hash.value @ .
4711 ok

(ATmega16)>

If you place the data structure in a different memory (e.g. the EEPROM) adapt the code accordingly. buffer:
needs to be replaced with a similiar allocation word and @/! with the proper memory access words. Remember,
memory is not always 2 bytes per cell.

See also:

5.2. General Code Examples 81

http://www.forth200x.org/buffer.html

AmForth Documentation, Release 6.5

Structures

Blocks

Blocks are the simple mass storage for forth. The mass storage is divided in a series of fixed size memory segments
that are transferred at once. To identify a memory segment, a block number is used. This number start with 1 and
can be as big as the cell size allows: 65535.

Every block has a fixed size. The ANS94 standard set this size to 1024 bytes, which is rather huge for most
atmega’s (only a few would have enough RAM to handle it). The file lib/blocks/blocks.frt has a con-
figurable constant called blocksize which is set to 512. This matches the native block sizes of sd-cards too.
That way amforth can address 32Mb mass storage.

There is only one block buffer. The usual block commands are available: block and buffer to load a new
block and save a modified block. update to mark the current block as modified. To display the block contents
two different list commands are available: one for text data, and one for generic (binary) data (based upon
dump). load and thru work too.

> hex 1 list
0143 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0153 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0163 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0173 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
....
not modified

> s" .(This is screen #1)" 1 block cmove update
> 1 list
0143 2E 28 20 54 68 69 73 20 69 73 20 73 63 72 65 65 .(This is scree
0153 6E 20 23 31 29 FF FF FF FF FF FF FF FF FF FF FF n #1)...........
0153 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0163 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0173 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
....
modified

> flush-buffers \ or load a different block to write back block 1

The Block commands to the buffer management and provide the high level access. The actual read and write
process is delegated to 2 deferred words: save-buffer and load-buffer. They get the RAM address of the
block buffer and the block number to do the data transfer. They can be changed to talk with various backends. So
far the I2C EEPROM Blocks serial EEPROM modules and the built-in flash memory are supported. Other targets
such as SD-Cards or SPI memory modules can be added as well.

<BUILDS / DOES>

<builds is the older sibling of create. It has been in use in pre-ANSI Forth’s and is still around as an
supplemental tool. It is a parsing word that takes the next word from the input source and creates a dictionary
entry in the current word list. Unlike create it does not add an execution token. Thus the word list entry created
is unfinished and calling it will crash the system.

The definition of the word list entry is finished with the does> section, that makes the word list entry a proper
callable word.

The big advantage over create is that create requires a rewrite of the contents of the execution token. That
is on microcontrollers with the flash based dictionary only possible if a single cell can be re-programmed. The
Atmegas can do that with little efforts, the MSP430 lacks essential ressources to do so.

From the programming perspective there are no differences. <builds can safely replace create in defining
words that contain a does> section as well. All other occurances of create should remain unchanged.

82 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

: constant create , does> @i ;
\ or
: constant <builds , does> @i ;

Using create/does>

The command combination create .. does> creates a challange on a microcontroller forth which dictionary
resides in flash memory since create writes the execution token. A subsequent does> replaces this execution
token with some other value. The AVR can reprogram it on the fly, the MSP430 places a much higher burden to
achieve it. Due to the size of a single flash page the the sequence create/does> works on the AVR8 only.

The combination <builds/does> works on all platforms without restrictions as a plug-in replacement.

A subtle error will be made with the following code

: const create , does> @ ;

This code does not work as expected. The value compiled with , is compiled into the dictionary, which is read
using the @i word. The correct code is

: const create , does> @i ;

Similarly the sequence

: world create (sizeinformation) allot
does> (size is on stack) ... ;

does not work. It needs to be changed to

: world variable (sizeinformation) allot
does> @i (sizeinformation is now on stack) ... ;

;

See also:

Defining and using Arrays <BUILDS / DOES>

Deferred Words

Deferred words a technique that allows to change the behaviour of a word at runtime. This is done by storing an
execution token under a certain name that is executed whenever that name is called. The stack effect is entirely
that of the stored execution token code. The basic specification is at www.forth200x.org/deferred.html which is a
must-read now.

Amforth supports different locations to store the execution token. The AVR8 provides 3 different variants:
Edefer stores in EEPROM, Rdefer stores in RAM and Udefer stores in the USER area. The MSP430
has only RAM (Rdefer) since flash is not changeable, except the info flash area.

Depending on the storage location, different initalization actions may be required at startup. Only the AVR8
EEPROM based defers work without further actions and every changes are kept likewise.

Assigning a new execution token uses the command IS for all defers, regardless of the actual location used.

AmForth uses the deferred words technique internally:

• turnkey is an EEPROM (AVR8) or info flash (MSP430) based deferred word that is executed from QUIT
during startup and reset.

• the words key, key?, emit, and emit? are USER deferred words for low level terminal IO. (AVR8)

• refill and source are USER deferred words used by the forth interpreter to get the next command line.

• pause is a RAM based deferred word that is called whenever a task switch can be done. It is set to noop
per default.

5.2. General Code Examples 83

http://www.forth200x.org/deferred.html

AmForth Documentation, Release 6.5

• !i does the actual flash write of a single cell. It is intended for Unbreakable AmForth (AVR8)

Since there is no standard defer word, the developer has to choose where to store the execution tokens. An
EEPROM location is keept over resets/restarts and is valid without further initialization. A USER based deferred
word can be targeted to different words in a multitasking environment and finally a RAM based deferred word can
be changed frequently.

How Defers work

Defers store an execution token. When the name of the defered word is called, they fetch this token and execute it.
When the name is compiled into another definition, this fetch-execute happens when calling this other word. That
way even a compiled deferred word can be changed later on since it’s only the defer definition that got compiled,
not its content.

> Xdefer foo
> : bar foo ;
> ' words is foo
> bar
<long list of words>

> ' noop is foo
> bar
<nothing>

>

Xdefer is one of the various defer defining word. Regardless of the actual type, all defers behave the same way.

The defer defining words are created with the same design:

: Rdefer ("name" --)
(defer)
here , 2 allot
[: @i @ ;] , \ used to read
[: @i ! ;] , \ used by IS

;

The first command (defer) creates the dictionary entry “name” and sets up the runtime behaviour (execution
token). The next line allocates a memory region (RAM in the example) and compiles its address. The two
quotations are called to access the data item. They are called with the address of the compiled address (thus the
@i). That way two memory accesses are performed: first is to get the address from the dictionary entry the second
to fetch/store from/to the address in the right memory pool.

Sealing Defers

It is sometimes necessairy to prevent a deferred word from changing. This can be achieved with the following
word

: defer:seal (XT --)
dup defer@ (-- XT' XT)
swap (-- XT XT')
dup ['] quit @i (get DO_COLON) swap !i
1+ dup rot swap !i
1+ ['] exit swap !i

;

With it, the dictionary entry is patched directly to change it from beeing a defer to a colon word named as the
deferred word calling only the current XT stored in it

(ATmega32)> Edefer mytest
ok

(ATmega32)> ' ver is mytest
ok

(ATmega32)> mytest

84 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

amforth 5.3 ATmega32 ok
(ATmega32)> ' mytest 5 - 10 idump
10E0 - FF06 796D 6574 7473 10CB 0836 005C 07D6 ..mytest..6.\...
10E8 - 07E0 FFFF ...
ok

(ATmega32)> ' mytest defer:seal
ok

(ATmega32)> ' mytest 5 - 10 idump
10E0 - FF06 796D 6574 7473 10CB 3800 078C 381A ..mytest...8...8
10E8 - 07E0 FFFF ...
ok

(ATmega32)> mytest
amforth 5.3 ATmega32 ok

(ATmega32)>

Technically the word mytest is changed to the same dictionary content as if it was defined as

: mytest ver ;

This is possible since a deferred word occupies 3 flash cells in the body and the faked colon definition needs only
2: the XT of the deferred word and the exit call.

Disabling the terminal command echo

Sometimes it may be desirable to turn off the echo function in accept when entering commands. One solution
to do it is to temporarily redirect the emit to do nothing.

variable tmpemit
: -emit ['] emit defer@ tmpemit !

['] drop is emit ;
: +emit tmpemit @ is emit ;

> 1 2 3
ok
> .s

0 809 3
1 80B 2
2 80D 1

ok
> -emit .s +emit
ok
>

Alternately the definition

: +emit tmpemit @ ['] emit defer! ;

could be used as well.

Interrupt Service Routines

An interrupt can occure any time. Interrupts are handled with standard forth words. They must not have any stack
effect.

The interrupt forth word is executed within the context of the current user area and stack frame. Using throw is
not recommended since it will affect the user area of the interrupted task.

+int (–) enable the interrupt handling globally

-int (–) disable the interrupt handling globally

int@ (n – XT) fetch the XT of the interrupt service routine for interrupt n

5.2. General Code Examples 85

AmForth Documentation, Release 6.5

int! (XT n –) store the XT as the handler for interrupt n. This has immediate effect.

int-trap (n –) simulate interrupt n

Interrupts are processed in two stages. First stage is a simple low-level processing routine. The low-level generic
interrupt routine stores the index of the interrupt in a CPU register.

The inner interpreter checks every time it is entered the register for a non-Null value. If it is set the interrupt
processing routine is activated. It uses the interrupt number and calculates the index into an platform specific table
(AVR uses the EEPROM, the MSP430 the index flash).

Defining and using Macros

Macros are small code snippets that do not represent a colon word for itself but the code is used verbatim in other
definitions. To use them, include the file lib/macro.frt (requires evaluate.frt and amforth version
4.7ff)

> macro square " dup *"
ok
> : foo 5 square . ;
ok
> foo
25 ok

square can be called just like a word definition as well.

> 6 square .
36 ok
>

There is only one drawback: the macro string cannot contain the delimiting character itself. You’re free to choose
any character however

> macro square2 _ dup *_
ok
> 5 square2 .
25 ok
>

Multitasking

Multitasking is a way to execute separate chunks of program code (tasks) apparently simultaneous on a single
CPU. Of course, the separate tasks will run one after another. If the CPU can switch between them fast enough,
separate tasks may appear to execute in parallel.

Multitasking in amforth is achieved as cooperative multitasking 1: In every task the programmer defines places,
where control is given up, such that the next task can run. The tasks current state is stored in a piece of memory
called the task control block (TCB). TCBs are organized in a simple, linked list and are visited in round–robin
fashion.

What is a Task?

Every task owns a piece of RAM, where it finds a set of runtime information (user area) and where it has its own
space for the data and return stacks. This space is called a task control block (TCB). Is is referred to by the task id
or tid, which happens to be the start address of the TCB by convention[#]_

The runtime information includes:

• status, whether the task is awake or sleeping

1 as opposed to preemptive multitasking

86 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

• follower, points to the next task in the list

• where do the stacks start and how many entries are currently on them

• the current value of base

• pointers to deferred words such as key, emit and the like

• the content of the stacks is not regarded part of the task control block. They can be located anywhere as
long as their location is known. They do belong to the task, however.

Viewed from afar, a task is just a piece of RAM holding a small set of important information.

Switching Tasks

To switch execution from one task to the next, the following things need to happen somehow:

• store the relevant bits of the current runtime in the task control block (stack pointers, mainly)

• look up the next task’s control block

• switch the userarea-pointer to that control block

• unfold the same bits, which were stored before giving up control, back into the runtime

• resume execution at the next instruction of the new task

So the problem is mainly an exercise in saving and restoring all relevant information.

Using the Multitasker

Problem

Simultaneous execution of several blocks of code (tasks) is desired on a single CPU.

Solution

Include the file lib/multitask.frt in your programm, define separate tasks as separate words. The start of
everything needs a little extra code (see starttasker). This solution is working together with turnkey.

Sample Program

The following example creates two tasks:

1. the command loop keeps running

2. increment a Counter N, write its value to PORTB. The intention is to make connected LEDs blink.

\ run_multitask -- tested with amforth-4.7, atmega-32

$38 constant PORTB
$37 constant DDRB
include lib/multitask.frt
\ load the multitasker
: ms (n --) 0 ?do pause 1ms loop ; \ call pause on wait
variable N
: init

$ff PORTB c!
\ portB: all pins high
$ff DDRB c!
\ all pins output
0 N !

5.2. General Code Examples 87

AmForth Documentation, Release 6.5

;
: run-demo
\ --- task 2 ---
begin
N @ invert PORTB c!
1 N +!
&500 ms

again
;
$20 $20 0 task: task_demo
\ create task, allot tcb + stack space
: start-demo

task_demo tib>tcb activate
\ words after this line are run in new task
run-demo

;
: starttasker

task_demo task-init
\ create TCB in RAM
start-demo
\ activate tasks job
onlytask
task_demo tcb>tid alsotask
multi

;
: run-turnkey

\ make cmd loop task-1
\ start task-2
\ activate multitaskingMultitasking
applturnkey
init
starttasker

;
’ run-turnkey is turnkey
\ make run-turnkey start on power up

When the program is started, LEDs connected to PORTB will blink. However, the prompt is presented as well
and commands will be handled.

> run-turnkey
amforth 6.3 ATmega32
ok
> tasks
149
running
309
running
Multitasker is running ok
> N @ .
199 ok
>

Discussion

The two tasks will happily run along provided, that both tasks call pause regularly. This call is built into the
command loop already. It is possible to call run-turnkey as turnkey. The program will survive a power
cycle, because task: stores the neccessary information in flash memory:

1. the address of the task control block

2. the start of the data stack (sp0)

3. the start of the return stack (rp0)

88 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

The sizes of the stacks are not explicitly stored. They can be inferred from the knowledge that all space is allocated
as one chunk. However, amforth does not protect the stack from overflows. Exceeding the allocated stack space
does cause unexpected crashes of your programm (see below at task:).

task-init prepares the task control block located in RAM. It erases any previous content, stores the addresses
of the stacks, the top–of–stack address for the data stack, base, and the status of the task (sleeping). start-demo
adds the calls to the tasks body into the TCB and stack space. task: will use three entries from the stack.

1. additional size of the user area in this task. This space can be used to create user–variables, which belong
to this task only.

2. size of the task’s return stack

3. size of the task’s data stack. Both stack sizes may be as small as $20 bytes. However, programs

exceeding a certain complexity may experience inexplicable crashes. If the program works in the foreground but
not as a task, increasing the stack sizes may help. Please note that calling ms, which in turn calls 1ms will not
produce accurate time intervals any more, depending on how much time is spent in the other tasks. One might
argue that the startup sequence (starttasker) is way too long and should not be handled by the programmer. On the
other hand, full control over the startup might be useful in unforeseen ways.

Multitasker: The Gory Details

amforth ships the file lib/multitask.frt featuring a multitasker based on code by Brad Eckert.

Task Control Block

The layout of the task control block is fixed. Technically it is located at the start of the so called User Area. The
first 6 entries (status ... handler) are not intended for changes by the programmer. The next 6 entries (base ... /key)
are commonly changed by the programmer. If more space for user variables is desired, the user area needs to be
increased specifically. When defining user variables, the offset of that variable from the start of the user area needs
to be specified. It is the programmers duty to keep track of how many entries have been used.

Also as a consequence the tid of a task holds the start address of the user area for that task. Its value is copied
into the user pointer upon task switch. The user pointer is fetched and stored with up@ and up!, respectively (see
definition of wake below).

Two offsets into the TCB are defined as user variables. They produce the address of TCB[0] and TCB[2] respec-
tively, correctly using the current TCB’s address.

decimal
0 user status
2 user follower

After that two noname: words are defined. These words will not have a header in the vocabulary, their execution
tokens (xts) are stored in the constants pass and wake. Their values will be stored in the status field (TCB[0]).

:noname (’status1 -- ’status2)
cell+ @ dup @ 1+ >r

; constant pass
:noname (’status1 --)

up! sp @ sp! rp!
; constant wakeMultitasking

Switching Multitasking on and off

To switch between tasks the deferred word pause is used. Normally, pause does nothing. Therefore turning
multitasking off is simple:

5.2. General Code Examples 89

AmForth Documentation, Release 6.5

\ stop multitasking
: single (--)
[’] noop is pause

;

A new word multitaskpause is defined, which will switch from this to the next task.

\ switch to the next task in the list
: multitaskpause (--)

rp@ sp@ sp ! follower @ dup @ 1+ >r
;
\ start multitasking
: multi (--)

[’] multitaskpause is pause
;

multitaskpause looks short and innocent, but a little explanation is called for:

rp@ \ -- rp | fetch the current return stack pointer
sp@ \ -- rp sp | fetch the current data stack pointer TOS
sp \ -- rp sp tcb[sp] | get the addr of user variable to store TOS
! \ -- rp | store, TCB[8] := TOS
follower \ -- rp tcb[2] | get the address of TCB[2]
@ \ -- rp tid' | fetch it's content, tid of the next task
dup @ \ -- rp tid' status' | fetch status of the next task (xt)
1+ \ -- rp tid' pfa | xt \Verb|>body|
>r \ -- rp tid' | put pfa of pass or wake on the returnstack

When multitaskpause exits, the interpreter finds the xt of wake or pass on the return stack and will continue
execution there.

If status was pass, the next task is sleeping, so we need to look for the next next task:

\ -- rp tid' | these are still on the stack
cell+ \ -- rp tid'[2] | point to follower
@ \ -- rp tid'' | get the tid of the next next task
dup \ -- rp tid'' tid'' |
@ \ -- rp tid'' status'' | fetch status of next next task (xt)
1+ \ -- rp tid'' pfa | xt of >body
>r \ -- rp tid'' | put xt of next next tasks status on return stack

This is repeated until an awake task is found. If status was wake, the next task should be running, so we need to
unfold it:

\ -- rp tid’ these are still on the stack
up! \ -- rp make user pointer point to tid’

This was the magic line. Now the stacks are different stacks! We left the old task’s data stack behind with rp on
top. Now we look at the new task’s stack and find rp’ of that task on top of it.

sp \ -- rp’
\ -- rp’ tid’[sp] get addr of TOS locationMultitasking

@ \ -- rp’ sp’ retrieve stack pointer of now current task
sp! \ -- rp’ store it in (activate) stack pointer
rp! \ -- store rp’ of this task in current rp

Switching multitasking on is simply pointing pause to multitaskpause. The inner workings are far from obvious,
but they have been proven to work.

Handling tasks

We need a few words to change the status of tasks:

90 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

: stop
: task-sleep
: task-awake (--)

pass status ! pause ; \ sleep current task
(tid --) pass swap ! ;
\ sleep another task
(tid --) wake swap ! ;
\ wake another task

A little more tricky is setting up a piece of code to be run in a task. activate will be used in a snippet similar
to this.

: run-demo (interesting work here ...) ;
$20 $20 0 task: task_demo
\ create task, allot tcb + stack space
: start-demo
task_demo tcb>tid activate
\ words after this line are run in new task
run-demo

;

activate will store the xt of run-demo on the return stack belonging to the TCB. It will also save the address
of top of return stack on top of the data stack belonging to the same TCB, and the address of TOS in the field
TCB[sp]. This particular order of information is expected by wake.

: cell- negate cell+ negate ;
\ continue the code as a task in a predefined tcb
: activate (tid --)

dup
6 + @ cell-
over
4 + @ cell- (-- tid sp rp)
\ point to RP0 SP0
r> over 1+ !
(save entry at rp) \ skip all after ACTIVATE
over !
(save rp at sp)
\ save stack context for WAKE
over 8 + !
(save sp in tos)
task-awake

;

onlytask initializes the linked list with the current task only. It copies the tid of the current task into the field
TCB[follower] to create a circular list.

\ initialize the multitasker with the current task only
: onlytask (--)

wake status !
\ own status is running
up@ follower ! \ point to myself

;

alsotask links a new task given by its tid into the list behind the current task.

: alsotask (tid --)
[’] pause defer@ >r \ stop multitasking
single
follower @ (-- tid f)
over (-- tid f tid)
follower ! (-- tid f)
swap cell+ (-- f tid-f)
!

5.2. General Code Examples 91

AmForth Documentation, Release 6.5

r> is pause \ restore multitasking
;

And then there is tasks to print the tid of every task in the list and its state to the serial console. It will also
report, whether the multitasker is switched on or not. If you uncomment the three commented lines, then the
values of top–of–stack and start–of–stack for the data and return stacks are also printed out. This might be useful
for debugging.

: tasks (--)
status (-- tid) \ starting value
dup
begin
(-- tid1 ctid)
dup u. (-- tid1 ctid)
dup @ (-- tid1 ctid status)
dup wake = if ." running" drop else

pass = if ." sleeping" else
abort" unknown" then

then
\ dup 4 + @ ." rp0=" dup u. cell- @ ." TOR=" u.
\ dup 6 + @ ." sp0=" dup u. cell- @ ." TOS=" u.
\ dup 8 + @ ." sp=" u. cr
cell+ @ (-- tid1 next-tid)
over over = (-- f flag)

until
drop drop
." Multitasker is "
[’] pause defer@ [’] noop = if ." not " then
." running"

;

Creating a TCB

So there is only one thing left to do, namely create space for a TCB and the stacks.

: task: (C: dstacksize rstacksize add.usersize "name" --)
(R: -- addr)
create here ,
\ store address of TCB
(add.usersize) &24 + allot \ default user area size
\ allocate stacks
(rstacksize) allot here , \ store sp0
(dstacksize) allot here , \ store rp0Multitasking
1 allot \ keep here away, amforth specific

does>
\ leave flash addr on stack

;

: tcb>tid (f -- tid) @i ;
: tcb>sp0 (f -- sp0) 1+ @i ;
: tcb>rp0 (f -- rp0) 2 + @i ;
: tcb>size (f -- size)

dup tcb>tid swap tcb>rp0 1+ swap -
;

task: allots memory for the task control block and its associated stacks. The sizes of the stacks are taken from
the data stack. The start of the data stack (SP0) is stored in TCB[6], the start of the return stack (RP0) is stored in
TCB[4]. Then new tid is moved from the return stack to the data stack. The task is marked as sleeping and one
more byte is allot’ed to keep here out of the way. This is an implementation feature of amforth. Also please note
that stacks are growing downwards. task-init initializes a TCB and copies the information stored in flash into
their correct locations.

92 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

: task-init (f --)
dup tcb>tid over tcb>size 0 fill \ clear RAM for tcb and stacks
\ fixme: possibly use init-user?
dup tcb>sp0 over tcb>tid &6 + !
\ store sp0 in tid[6]
dup tcb>sp0 cell- over tcb>tid &8 + ! \ store sp0-- in tid[8], tos
dup tcb>rp0 over tcb>tid &4 + !
\ store rp0 in tid[4]
&10 over tcb>tid &12 + !
\ store base in tid[12]
tcb>tid task-sleep
\ store ’pass’ in tid[0]

;

Versions of lib/multitask.frt prior to amforth-4.7 are broken in that there is no permanent storage as
described above. These versions of the multitasker work, but they do not survive a power cycle.

Pitfalls

Using Forth on a microcontroller is something different to work on a PC. Some potential pitfalls are discussed
here.

Memory content

On the PC restarting the Forth system resets the dictionary content. On the microcontroller, the dictionary is
unchanged, but the RAM contents is totally different. You definitly need a proper initialization phase for each
and every byte in RAM. Starting with version 5.9 amforth cleans all RAM content to 0, older version keep it
unchanged.

Stack depth’s

The standard stack depth is 40 cells for both return and data stacks. A well written program may never reach that
limit. Using interrupts may cause trouble if they happen in a nested way. For speed reason, amforth does not
check the stack depth’s itself. You can check them with a marker byte (e.g.$dead) at the stack limit that is checked
regularily.

Prompts

Since release 6.3 amforth has three redefinable prompt words. They are called in the outer interpreter quit:

: quit (--)
lp0 lp ! sp0 sp! rp0 rp! \ setup the stacks
[\ switch to interpret mode
begin \ an endless loop begins

state @ 0= if .ready then
refill if

['] interpret catch
?dup if
dup -2 < if .error then
recurse \ restarts without turnkey

then
else
.ok

then
again ;

5.2. General Code Examples 93

AmForth Documentation, Release 6.5

The .ready is called whenever the system signals its readyness for input. It’s default starts a new line and
displays the > character. The definition is

USER_P_RDY Udefer .ready
:noname (--) cr ."> " ; is .ready

After this prompt, the refill action is called when the command line has been processed. The .ok prompt
word is used when the input line has been processed successfully. It’s default displays the “ok” string

USER_P_OK Udefer .ok
:noname (--) ." ok " ; is .ok

The third prompt word is called whenever the systems detects an error or an unhandled exception. It default prints
the exception number and the position in the input buffer where the error has been detected

USER_P_ERR Udefer .error
:noname (n --) ." ?? "

\ print the exception number in decimal
base @ >r decimal .
\ print the position in the input buffer
>in @ .
\ restore base
r> base !

; is .error

The :nonames indicate that the default actions don’t have a name in the dictionary. The defers are stored in the
USER area since all other words related to command IO are there too. Any replacement words are expected to
follow the stack diagrams otherwise the system may crash.

Redirect IO

The IO system consists of 4 words: EMIT, EMIT?, KEY and KEY?. The are deferred words, e.g. they can be
changed at runtime.

Output

Amforth has many words like ." and type to write information. All these words do not do the output work
actually, they call emit for each and every single character.

: morse-emit (c --)
... \ some code to let a buzzer beep for the character c

;
' morse-emit is emit
\ now everything gets morsed out. even the prompt
\ unless your morse-emit does not call the previous
\ emit nothing will be displeyd
s" let it beep" type

The same technique may be used for e.g. a 44780 LCD. The new code has to take care of everything like scrolling
etc as well.

To complete the picture, another word emit? should be redefined. It is called in front of <emit> to check whether
the output is possible. If no such check is necessary or possible, just do an ’ true is emit?

Unless you do not change the turnkey action as well, everything gets reset to serial IO whenever you call WARM.

Input

Input is based upon single characters. The command key? checks whether an unread character is available and
key fetches it. To read an user supplied buffer, the command accept can be used. It reads until either the buffer
is filled or an end-of-line character is found (caridge return and/or line feed).

94 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

Depending on the input source, different strategies may be used. The simplest way is to poll the input device
frequently and hope that no character is lost. More sophisticated is the use of interrupts. They can be called at any
time and almost guarantee that no characters will be lost. The interrupt usually fills an internal small buffer key
and key? can deal with.

: ps2-key-isr (--)
\ get the most recent key stroke
\ place the key-event in a queue

;
: ps2-key? (-- f)
\ check the input queue, return true if
\ a key-event is unread

;
: ps2-key (-- c)
\ read and unqueue the oldest key-event from the
\ queue.

;
\ the next word changes the terminal input to
\ the PS2 based system. This cannot be done interactivly!
: ps2-init (--)
\ initialize ps2-key-isr
['] ps2-key? is key?
['] ps2-key is key

;

There are some notes that may affect your program

• If a multitasker is used take care to include calls to pause in your key? and emit? definitions.

• It is not uncommon that key calls key? in a loop until a character is available.

• AmForth uses one of the following words depending on the WANT_RX_ISR settings. It defaults in
preamble.inc to WANT_RX_ISR=1.

WANT_RX_ISR
0 1
rx-poll and rx?-poll rx-isr and rx?-isr

• All IO words with more complexity (e.g. type or accept call any of the 4 deferred words. There is no
need to change them.

• Amforth uses the control characters for the line editing (e.g. backspace, TAB, CR/LF). Characters are 8 bit
numbers (ASCII). Multibyte-Characters are not currently supported.

See also:

Disabling the terminal command echo

Simple Strings

On the command line, strings are part of the current SOURCE buffer. Their content is usually lost, when SOURCE
gets REFILL’ed. The command

> s" hi there" type
hi there ok

>

works fine. If you split the commands into two lines like

> s" hi there"
ok

> type
ei there ok

>

5.2. General Code Examples 95

AmForth Documentation, Release 6.5

it will print the last character of type and the remaining characters from the previous command line. If a string
has to be used later on, it needs to be moved to another buffer within the same command line or accept is used
to enter the string into some other buffer (see below for an example).

> s" hi there" pad swap cmove> \ length information gets lost
ok

> pad 7 type
hi ther ok

>

In colon definitions, s" does something completely different: It copies the whole string from the SOURCE buffer
to flash (into the dictionary) and at runtime provides the flash address and length of the string. This data can be
used with e.g. ITYPE.

\ allocate RAM for the string content.
20 buffer: namestring
variable age

\ enter string and print them
: input (buf-addr buf-len prompt-addr prompt-len -- buf-addr buf-len)
cr itype over swap accept ;

: getname (-- addr len)
namestring 20
s" Who are you? " input ; \ [1]

: getage
0. \ [2]

pad 3 \ [3]
s" How old are you? " input
>number 2drop d>s \ [4]
age ! ;;

: .name (addr len --) type ;
: .age (--) age @ u. ;

: .hallo cr ." Nice to meet you"
.age ." year old "
.name \ [5]
." ." cr ;

\ putting it all together
: ask getname getage .hallo ;

Running the command ask gives the following session

> ask

Who are you? Hannu

How old are you? 23

Nice to meet you 23 year old Hannu.
ok

>

Notes

1. s" compiles a string into flash. The compiled string gets a runtime that leaves the address/length pair of
the compiled string and skips its content for further program execution.

2. Places a double cell zero value onto the stack to be used at >number.

3. pad is a commonly used temporary storage pool. It is not used by the system itself. Its location is rela-
tive to HERE, so every change to HERE will move PAD as well.

96 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

4. >number is a standard word that converts a string to a number. To get the actual age (assuming a rea-
sonable value) the 2drop removes some returned data. Finally the double cell age is converted to
single cell and stored at the variable age.

5. getname leaves the actual length of the name string on the stack. This length information is not stored
elsewhere. .name removes this information so you cannot reconstruct this data.

> : label: create s, , does> ;
ok

> 42 s" hello" label: example
ok

> example icount itype
hello ok

> example icount 2/ 1+ + @i .
42 ok

>

s, copies a string from RAM to flash, increasing the DP. The storage format follows the counted string schema:
first cell is the length information, followed by the characters, 2 per flash cell. A zero byte is appended if necessary
to fill the last flash cell. It is an internal factor of s".

This recipe is based upon ideas from Hannu Vuolasaho and Michael Kalus.

Structures

Structures are used to keep complex data in one place. Classical use cases are records.

To use structures, load the file lib/forth200x/structure.frt into the controller. It has no further de-
pendencies.

\ simple test example for forth200x structures
\ define a new data structure named list.

begin-structure list
field: l.p \ previous
field: l.n \ next
field: l.d \ data

end-structure

\ create an instance of the datastructure list
\ named listroot

list buffer: listroot

\ access an element from the instance
$55aa listroot l.d !

\ place a structure at a special place
begin-structure atmega-port

cfield: PIN
cfield: DDR
cfield: PORT

end-structure

\ Atmegas have 3 addresses per port, use
\ the lowest one here
$39 constant PORT-A

\ set all pins to output
$ff PORT-A DDR c!

The example shows a few aspects that should be known:

5.2. General Code Examples 97

AmForth Documentation, Release 6.5

• field names are global entries in the dictionary, one should choose good names for them. Names like a are
a no-go. One possibility is the schema structure-name->fieldname

• structures keep definitions in flash, the data goes to RAM.

The package works with amforth version 4.0 and newer.

See also:

Defining and using Arrays

Loop With Timeout

Many low level routines require to wait for a specific condition come true: A transmission is finished, a flag is
set etc. Most of the time these action do work fine. But sometimes, the check loop does not terminate for some
(usually stupid) reason and the program essentially crashed.

\ wait for twi finish
: twi.wait (--)
begin
TWCR c@ 80 and

until
;

To circumvent such unwanted endless loops, a timeout is often a solution. This ensures that the loop will be left,
regardless what happens. This recipe is based upon the timer module from the lib/hardware directory, that
provides a millisecond tick that can be used for timeouts as well.

A timeout loop is basically a modified begin that takes a runtime parameter: the maximum allowed time for a
particular loop. The loop terminater (again, until, etc) is left unchanged. If the loop terminates properly, the
timeout is ignored, otherwise an exception is thrown. It is up to the programmer to catch that exception. If it is not
catched, the forth interpreter will do it and returns to the command prompt.

\ timeout-begin is a potentially endless loop
\ that terminates after a predefined timeout

\ in the case of a timeout an exception is thrown
variable alarmtime
: (init-alarm)

@tick + alarmtime !
;

: (check-alarm)
alarmtime @ expired? if -512 throw then

;

: timeout-begin
postpone (init-alarm)
postpone begin
postpone (check-alarm)

; immediate

Since the alarm checks are simple, some precautions should be obeyed:

• The timer gives a millisecond resolution.

• The longest timeout period is 65.535 seconds (slightly more than a minute).

• The timeout-loop cannot be nested. If you want to use it in a multitasking environment, change the
variable to a user.

• Don’t forget to initialize and start the timer.

\ testcase. timeout after 100ms
: foo

98 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

100 timeout-begin
noop

again
;

Trouble Shooting

There are several pit falls, one may fall into. There are two milestones for a working amforth: A working command
prompt and a successful compilation.

No prompt

By experience: check your hardware. Check whether you use the serial port that you configured in amforth. Many
atmegas have more than one serial port and usually the wrong one is configured.

Next check the baud rate and the cpu frequency. They must match the configured numbers. There are some fuses
as well that affect the cpu frequency. Check them too!

Failed to compile

If your prompt works, the compile step may fail as well. A definition may not return to the command prompt or
any further command fails without any message. There are usually two reasons: The fuses and the fuses.

Amforth requires that the whole NRWW section is used for the bootloader. If the bootloader section is smaller
than the maximum (largest) NRWW size, compilation fails.

Another sensitive fuse is the boot reset vector (bootrst). It has to point to address 0, not to the NRWW section.
Usually it means to set it to off value.

Turnkey applications

Turnkey application automatically execute a word upon startup. The default turnkey action establishes the serial
line communication and prints the welcome messages (version number, cpu name, frequency). When the turnkey
action finishes, the control is handed over to the amforth interpreter loop, which never finishes.

Turnkey itself is a deferred word. That means that it can be changed by applying a new execution to it. Whether
the turnkey action leaves data on the stack is up to the application needs. Turnkey is called with an empty data
stack.

: myinit (--)
\ some code

;

\ save the xt of myinit into turnkey vector (an eeprom variable)
' myinit is turnkey

Special care must be taken if the turnkey action should not be replaced but appended. To achieve this, the current
turnkey action has to be stored elsewhere and this execution must be called inside the new turnkey command.

\ some dependency files
\ #include avr-values.frt
\ #include is.frt
\ #include ms.frt
\ #include defers.frt

\ keep the previous turnkey action.
' turnkey defer@ Evalue tk.amforth

: tk.custom

5.2. General Code Examples 99

AmForth Documentation, Release 6.5

\ call the previous turnkey action
tk.amforth execute

\ now something specific e.g.
1000 ms
;

' tk.custom is turnkey

Be aware that the initialization sequence must not be repeated, this will create an endless loop by calling the
turnkey action inside itself.

Shells And Upload

amforth-shell.py

The amforth-shell.py from Keith Amidon may simplify the interaction with amforth and the forth code manage-
ment while uploading projects.

It is a python2 script that runs fine on Linux, other platforms may work as well. The tool takes care of the correct
transfer of the source code and will optionally pre-process the sources: e.g. replace the register names with their
numeric values. This saves valuable flash (dictionary) space since most of these registers are used only once.

mt@ayla:~/amforth$ cat tools/test.frt
\ this is a test
INT1Addr .
ver 1000 ms cr
1000 ms
ver cr ver
1000 ms
mt@ayla:alias|grep amforth-shell
alias u0='$HOME/amforth/tools/amforth-shell.py -p /dev/ttyUSB0 --no-error-on-output'
mt@ayla:~/amforth$ u0 test.frt
|I=mcudef
|I=using device.py for atmega1280
|F=....test.frt
|C| 1|\ this is a test
|S| 2|INT1Addr .
|O| 2|4
|S| 3|ver 1000 ms cr
|O| 3|amforth 4.9 ATmega1280
|S| 4|1000 ms
|S| 5|ver cr ver
|O| 5|amforth 4.9 ATmega1280
|O| 5|amforth 4.9 ATmega1280

Note the replacement of the INT1Addr with 4 in line 2. This is done by using the device.py file from the
core/devices/atmega1280p directory which is automagically identified and loaded at startup. And second note,
that the file is found automatically in the subdirectory tools.

The amforth-shell.py utility has a lot of more features: an interactive command prompt with dynamic command
completion and command history (stored across multiple invocations), a lot of runtime checks and so on. To enter
an interactive session, just call it with the port name

mt@ayla:~/amforth$ u0 -i
|I=Entering amforth interactive interpreter
|I=using device.py for atmega1280
(ATmega1280)> # (and pressing TAB twice)
#directive #exit #quote-char-word #tib
#update-cpu #edit #ignore-error #s #timeout
#update-words #cd #error-on-output #include #string-start-word

100 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

#timeout-next
(ATmega1280)> #

Note that not all words displayed here are actual commands on the controller itself. The terminal provides com-
mands itself, they start with a # (hash mark).

To locate the files, the utility checks the current work directory or, if set, the directories from the environment
variable AMFORTH_LIB. Be careful when using a directory with many files, the startup may take a long time
due to the directory tree scanning.

mt@ayla:~/amforth$ grep AMFORTH ~/.profile
AMFORTH=~/amforth
AMFORTH_LIB=$AMFORTH/lib:$AMFORTH/examples
export AMFORTH_LIB
mt@ayla:~/amforth$

e4thcom - A Terminal For Embedded Forth Systems

Manfred Mahlow has a nice tool for working with various Forth’s. It works primarily on Linux systems and
supports among other things uploading of source code to remote systems.

More information and downloads are available at http://wiki.forth-ev.de/doku.php/en:projects:e4thcom

Programming and Debugging

Forth Assembler

Amforth is written in assembly language. Writing assembly words usually requires a rebuild of the hex files
and flashing them to the controller. Lubos Pekny developed an assembler that runs within amforth and does not
require a change of the amforth sources. Its syntax is a mixture of the standard Atmel assembly and forth. The
mnemonics are close to Atmel’s. The forth influence leads to a postfix notation and that the words that do the
actual code generation end with a comma.

Start

To use it, load the file lib/assembler.frt and its dependencies into a running amforth. The assembler uses
word lists to organize itself. The assembler supports all common mnemonics regardless of the controller type.

The assembler words are in a seperate word list. To activate it, the following sequence is typically used:

forth only also assembler

This resets the word list order and adds the assembler word list. After successfully compiling the assembler word,
the word list can be removed with previous.

Simple Example

The example uses the assembler for words that could easily be written in plain forth. Nevertheless an implemen-
tation in assembler is done. The code itself it taken from a posting on Roboforum.RU

$2F constant tccr1a
$2E constant tccr1b

\ stop timer1
\ : t1> 0 TCCR1 c! ;
code t1>

tccr1b R2 out,

5.3. Programming and Debugging 101

http://wiki.forth-ev.de/doku.php/en:projects:e4thcom
http://roboforum.ru/forum58/topic4406-75.html

AmForth Documentation, Release 6.5

end-code

\ start timer1 @ normal mode, prescaler=8 (1us counter @8MHz)
\ : <t1 2 TCCR1 ! ;
code <t1

R17 2 ldi,
tccr1a R2 out,
tccr1b R17 out,

end-code

The new words can be used just like a ordinary forth words.

\ stop timer1 & zero counter
: <t1> t1> 0 dup TCNT1H c! TCNT1L c! ;

\ show t1 counter
: .t1

TCNT1L c@ TCNT1H c@ 8 lshift + dup
." (0x" .x .")" bl emit u. ." us"

TIFR dup c@ $4 and dup \ test TOV1 flag
if bl emit ." overrun"

over c@ or swap c! \ clear TOV1 by writing'1'
else drop drop then cr
;

\ timing test using timer1, xt - executable address
: ?us <t1> <t1 execute t1> .t1 ; (*x xt -- *y)

Build Timestamp

AmForth has a version number, that can be read with an environment query:

> s" version" environment? drop .
50 ok
> s" version" environment search-wordlist drop .
50 ok
>

In addition to this information (esp for those who use the newest revision from the source repository) the built
timestamp maybe useful as well. To get it, AmForth needs to be compiled with the file words/built.asm
included. Calling it prints the date and time the hexfile was generated in the current terminal.

> built
Nov 22 2012 23:12:94 ok
>

The assembly code uses some avr asm specific macros, the string length information is hardcoded.

; (--) System
; R(--)
; prints the date and time the hex file was generated
VE_BUILT:

.dw $ff05

.db "built",0

.dw VE_HEAD

.set VE_HEAD = VE_BUILT
XT_BUILT:

.dw DO_COLON
PFA_BUILT:

.dw XT_DOSLITERAL

.dw 11

102 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

.db __DATE__ ; generated from assembler

.dw XT_ITYPE

.dw XT_SPACE

.dw XT_DOSLITERAL

.dw 8

.db __TIME__ ; generated from assembler

.dw XT_ITYPE

.dw XT_EXIT

Subversion Revision Number

If you are using the subversion sandbox from the sourceforge repository, the following solution from Enoch
provides the subversion revision number.

His solutions extends the Makefile to generate a small forth snippet that contains the information as a string.

AMFORTH := ../amforth/trunk
CORE := $(AMFORTH)/core
DEVICE := $(CORE)/devices/$(MCU)

SVNVERSION := `svnversion -n $(AMFORTH)`

$(TARGET).hex: $(TARGET).asm *.inc words/*.asm $(CORE)/*.asm $(CORE)/words/*.asm
$(DEVICE)/*.asm

$(XASM) -I $(CORE) -o $(TARGET).hex -e $(TARGET).eep -l $(TARGET).lst $(TARGET).asm
echo ": svnversion .\" r$(SVNVERSION)\" ;" >svnversion.frt

Running make creates the file svnversion.frt in the current directory that contains the output of the
svnversion -n command. Uploading this file creates the forth command _svnversion_ that prints it in the
terminal.

\ #include svnversion.frt

: myturnkey
\ snip

applturnkey
space svnversion

;

' myturnkey is turnkey

\ The result:
\ ~~~~~~~~~~~

amforth 4.9 AT90CAN128 r1306M

GIT Branch Name

Adding the name of the current GIT branch is slightly more complex. The first step is creating a template file as
appl/words/git-info.tmpl This file will be transformed into an assembly file with some search-replace
actions during this copy.

; (--) System
; R(--)
; GIT Info
VE_GITINFO:
.dw $ff08
.db "git-info"
.dw VE_HEAD
.set VE_HEAD = VE_GITINFO

XT_GITINFO:

5.3. Programming and Debugging 103

AmForth Documentation, Release 6.5

.dw DO_COLON
PFA_GITINFO:
.dw XT_DOSLITERAL
.dw @BRLEN@
.db "@BRNAME@"
.dw XT_ITYPE
.dw XT_EXIT

The next step is to add the file words/git-info.asm to the list of included files (e.g. dict_appl.inc).
The final step is to add a rule to the build tool. In this example, ant is used, so edit the build.xml file in the
project application directory as follows:

<!-- change existing rules -->
<target name="uno.hex"

depends="git-info"
description="Hexfiles for"/>

<!-- add to build.xml -->
<macrodef name="git-branch">

<attribute name="output" />
<sequential>

<exec executable="git" outputproperty="branch" >
<arg value="rev-parse"/>
<arg value="--abbrev-ref"/>
<arg value="HEAD"/>
<env key="LANG" value="C"/>

</exec>
<property name="@{output}" value="${branch}"/>

</sequential>
</macrodef>

<target name="git-info">
<git-branch output="branch" />
<length property="length" string="${branch}"/>
<copy tofile="words/git-info.asm" file="words/git-info.tmpl" overwrite="true">

<filterset>
<filter token="BRLEN" value="${length}"/>
<filter token="BRNAME" value="${branch}"/>

</filterset>
</copy>

</target>

With these settings, a new command is available git-info. It prints the current branch name in the terminal:

> git-info
master ok

>

Its easy to add this command to the applturnkey actions as well.

Conditional Interpret

It is often desirable to do actions conditionally. E.g. define a word if it’s not there. For that, the words [defined]
and [undefined] can be used. Amforth lacks an [if] to really make use of them. A real [if] is not that
easy and a huge piece of code since it has to support nested [if] too. A way simpler solution is the following. It
is restricted to the current SOURCE content, which is usually the current command line.

The basic idea is a conditional comment: ?\. It takes a flag and works like \ if the flag is true. if the flag is false,
the remaining line is interpreted as if nothing has happened.

104 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

: ?\ (f --)
if postpone \ then

; immediate

The use is straigt forward:

\ define foo unless it already exists
[undefined] foo ?\ : foo ." I'm foo " ;

\ call a word if defined
[defined] ver 0= ?\ ver

This recipe is based on a usenet posting of Bruce McFarling, 13.7.2014, on comp.lang.forth.

Coroutines

Coroutines are a computer science building block. From a users perspective they form a way to let code in different
words communicate with each other. Thus coroutines can be seen as a simple way to multitask.

The key command is co:

: co r> r> swap >r >r ;

Producer/Consumer

A producer generates data which a consumer deals with. The example simply generates sequence of numbers
which are printed to the terminal. The sequence ends when a value of 10 is reached.

: producer (n -- n' n') begin 1+ dup co again ;
: consumer

0 producer
begin dup . 10 < while co repeat
r> drop drop ;

The producer is quite simple. It is an endless loop that increases the TOS element, duplicates it and calls the
partner. It creates a potentially endless stream of increasing numbers on the stack. For every new number, the
other process (the consumer) is called via co to ... consume this number.

> consumer
0 1 2 3 4 5 6 7 8 9 10 ok

>

The consumer has a little more to do. It is responsible to initially call the producer and to clean up after finishing.

Ceavats

Since there is dark stack magic in place, a construct like

: producer (n -- n' n') begin 1+ dup co again ;
: consumer begin dup . 10 < while co repeat ;
: runit 0 producer consumer r> drop drop ;

wont work. For such code, the co command needs to go deeper into the return stack.

For the same reason calls to CO inside DO-loops wont work. This is due to the loop parameters on the return
stack.

5.3. Programming and Debugging 105

AmForth Documentation, Release 6.5

Ctrl-C

To interrupt a running system at any time and reset it to the prompt a keyboard command ctrl-c is often used.
AmForth can honour such a keystroke as well. To achieve it, a small code change needs to be applied and a new
hex file pair has to be flashed to the controller.

The code change affects the interrupt usart handler (drivers/usart-rx-isr.asm). Here add the 4 lines
5-8:

1 lds xh, USART_DATA
2 ; optional: check for certain character(s) (e.g. CTRL-C)
3 ; and trigger a soft interrupt instead of storing the
4 ; charater into the input queue.
5 cpi xh, 3
6 brne usart_rx_store
7 jmp 0
8 usart_rx_store:
9 lds xl, usart_rx_in

With this change, whenever the keyboard sends the ascii code 3 (for ctrl-c) it is catched immediately and a soft
reset is made. it requires that the WANT_ISR_RX option is set to 1.

Customize AmForth

Customization takes place when you create the hex files. It requires to edit files and re-generate them using the
assembler.

All customization is done in the application master file. A good starting point is template/template.asm.
If you change any other file, good luck. You can look for these options in the code however.

Application / Board specific

Every application is unique. Thus you need to create your own amforth specific to your intended environment.
There is no generic image that works everywhere.

First make a copy of the appl/template directory (myapp in this example).

mt@ayla:~/amforth/appl$ cp -r template myapp

Next edit the template.asm in the mayapp directory. You may want to rename the file later. There are only a
few lines that need your attention.

; include the amforth device definition file. These
; files include the *def.inc from atmel internally.
.include "device.asm"

This line is tricky. It uses the generated include file but does not specify the controller type itself. The magic is in
the list of INCLUDE directory that is defined in the Makefile. Alternatively change the line to

.include "devices/atmega1280/device.asm"

please use the same directory name from the pd2amforth run above. The downside of using the controller-
dependent directory name instead of some makefile variables is that you have to keep the definition of the controller
type in sync in two files. The makefile always need the information for the programmer.

The next essential information is the frequency your controller uses. It is necessary (at least) to calculate the
proper usart settings and to get the right delay in the forth word ms.

; amforth needs two essential parameters
; cpu clock in hertz, 1MHz is factory default
.equ F_CPU = 16000000

106 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

The last setting is the command terminal for the prompt. There are a few predefined settings. Unfortunately Atmel
has changed the wording over time. In most cases make sure that the number in the _0 reflects the number in the
RXEN0 definitions and the final 0 in the UCSZ00. Elder controllers do not have a number suffix, just delete it
(atmega32 may serve as an example for it).

; initial baud rate of terminal
.include "drivers/usart_0.asm"
.equ BAUD = 9600
.equ USART_B_VALUE = (1<<TXEN0) | (1<<RXEN0) | (1<<RXCIE0)
.equ USART_C_VALUE = (3<<UCSZ00)

The next file to edit is the Makefile (or the build.xml if you want to use the ant utility). First set the right
controller type:

the MCU should be identical to the device
setting in template.asm, it set
MCU=atmega1280

The last change is the placement of the avrasm2.exe and the Appnotes2 directory.

directories
DIR_ATMEL=../../Atmel

To flash the controller, the program avrdude is used. Depending on your programmer, define the BURNER
variable as well:

programmers / flags
USB=-c avr911 -P /dev/ttyUSB3
PP=-c stk200 -P /dev/parport0
JTAG=-c jtag2 -P /dev/ttyUSB2
BURNER=$(USB)
AVRDUDE=avrdude
AVRDUDE_FLAGS=-q $(BURNER) -p $(MCU)

All other settings can be kept for now. Just run make and look for errors.

WANT - Options

WANT Options are used to select certain features. There is always a default value in place (0).

The files core/devices/$MCU/device.asm contain among other things a complete list of WANT Options
that can be used to include device specific Names into the dictionary.

.set WANT_AD_CONVERTER = 0

.set WANT_ANALOG_COMPARATOR = 0

.set WANT_BOOT_LOAD = 0

.set WANT_CPU = 0

....

Changing these options to 1 includes the matching sections from device.inc into the generated dictionary.
The same effect could be achieved by selectively send the device.frt file sections.

Another such option is the WANT_IGNORECASE option. If it is set to 1, the amforth dictionary lookup routine is
extended to handle upper and lower case words the same. This makes foo and FOO the same. This is a dictionary
wide setting, valid for both pre-defined and self-defined words.

The 3rd group switches the USART terminal communication between interrupt and poll based routines:

.set WANT_ISR_TX = 0

.set WANT_ISR_RX = 1

Settings the value of 1 select the interrupt based routines, otherwise the poll driven routines are used. It is recom-
mended to leave the options as they are set.

See also:

5.3. Programming and Debugging 107

AmForth Documentation, Release 6.5

Redirect IO

Debug Shell

A debugger is a tool to check data at runtime. For amforth there is no single tool for that purpose. There are a
Tracer and a Profiler available. They modify the code generation to achieve their goals. The debugshell presented
here is called at explicit breakpoints to stop the execution of the current word and gives an independent command
prompt to execute arbitrary commands.

This debugshell core can be modified and expanded in many ways. One example is the Watcher Utility for memory
access.

Core

The debug shell core is quite small. Only 3 lines of code:

82 buffer: debugbuf
: (?) cr ." debug> " debugbuf dup 80 accept ;
: ?? begin (?) dup while (evaluate) repeat 2drop ;

Technically it is an isolated command shell activated at any time. With this debugger you can place the command
?? anywhere in your code and you’ll get the debug> prompt whenever execution reaches it.

Extensions

The first extension is to have an on-off feature of the debugger. This can be achieved by an global flag or using
deferred words:

0 value debug?
\ re-defines the ?? command and uses the old one
\ internally
: ?? debug? if ?? then ;

assigning a non-zero value to debug? (true to debug?) will activate the debug prompt. Note that the debug
flag is stored in EEPROM und the settings survive a reset.

Another on-off implementation uses the deferred word technique.

Edefer breakpoint
' ?? is breakpoint
\ ' noop is breakpoint

Here you use the command breakpoint in your code instead of the basic ?? command.

: foo bar breakpoint baz ;

Note that the deferred vector is stored in EEPROM and the settings survive a reset.

The third extension uses interrupts. Since amforth executes them as ordinary forth code it is possible to assign any
interrupt source to the ?? command (0 is an example interrupt number)

> ' ?? 0 int!
> 0 int-trap

debug> rp@ hex .
82D
debug>
ok

>

108 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

When you use an external interrupt via a simple key you get the debug prompt whenever you press it. If you
configure and enable the external interrupt of course. Note that in this case the debug prompt is executed in the
interrupt mode of the controller, you have to use the polling implementation of the usart receive module.

Dump Utilities

Stack Dumps

Stack dumps can be generated with the command .s. The standard does not specify, how the output has to be
formatted. There is an assembly version available intended for core development. This means that numbers are
printed as unsigned (hex is highly recommended) and the TOS is on the left hand side. This makes it easy to get
the most important information easily and the numbers are quickly found in memory dumps and the assembler
LST and MAP files.

> -1 -2 -3 .s
65533 65534 65535 ok

> hex .s
FFFD FFFE FFFF ok

>

Many other Forth’s and the various books use another stack dump format. It uses signed numbers and places
the TOS on the right side. This can be achieved with the following definition, kindly provided by Enoch on the
mailing list:

: .s (--) \ stack picture listing order
depth
begin dup while dup pick . 1- repeat
drop

;

The output looks like:

> -1 -2 -3 .s
-1 -2 -3 ok

>

Other stack dumps are kindly provided by Erich:

\ variations on dot-s
\ dot-s, one way, signed output:
: ds sp@ sp0 1 cells - do i @ . -2 +loop ;

\ dot-s, one way, unsigned output:
: uds sp@ sp0 1 cells - do i @ u. -2 +loop ;

\ dot-s, the other way (reverse?), signed output:
: rs sp@ sp0 swap do i @ . 2 +loop ;

\ dot-s, the other way, unsigned output:
: urs sp@ sp0 swap do i @ u. 2 +loop ;

\ dot-s, verbose, as it used to be in earlier versions of amforth:
: dsv depth dup 0 do i u. dup i -

cells sp0 swap - dup u. @ . cr loop ;
: udsv depth dup 0 do i u. dup i -

cells sp0 swap - dup u. @ u. cr loop ;

Memory Dumps

Atmegas have three different memory address spaces. Each region has its own dump utility

5.3. Programming and Debugging 109

AmForth Documentation, Release 6.5

dump Standard Memory. Every Address unit has 8 bits.

> $180 $20 dump

0180 36 30 31 33 33 02 87 75 F4 6D 74 26 8F 63 A3 CD 601CD..u.mt&.c..
0190 44 AB FC D7 3D DA D7 16 59 EB 3F AF 76 F2 27 3F D...=...Y.?.v.'?

ok

edump EEPROM. Similar to RAM, every address unit has 8 bits, but since it used on a cell (16 bits) basis, the
display uses this number width:

> 0 $30 edump

0000 - FFFF 0EA3 0121 0052 0CC7 3B65 0019 0B2B!.R...e;..+.
0010 - 0014 0014 0E66 0001 0014 FFFF FFFF FFFFf...........
0020 - FFFF FFFF FFFF FFFF 0000 0000 085F 080F_...
ok

idump Flash. Unlike the other memories, flash has 16 bits per address unit:

> $dc0 $20 idump

0DC0 - 3830 0DC5 38D0 3837 002E 381A FF05 322E 08...878...8...2
0DC8 - 6568 0078 0DAB 3800 3B23 02D5 02DD 02DD hex....8#;......
0DD0 - 02FF 0430 381A FF05 342E 6568 0078 0DC6 ..0..8...4hex...
0DD8 - 3800 3B23 02D5 02DD 02DD 02DD 02DD 02FF .8#;............
ok

Exceptions

Exceptions are a way to commicate situations that cannot easily handled. An exception is a number. And only
a number. The process to send an exception is called throw. The communication process follows the call stack
upwardly. At any level it can be catched. Catching an exception means to handle it. It is possible to re-throw an
unhandled exception. The standard amforth system has an outermost exception catcher. It handles all exceptions
by printing their number and returning to the command prompt.

Exceptions are thread local. It is up to the user to catch all exceptions that may occure, since threads do not have
an outermost exception catcher. An unhandled exception freezes the system.

The Forth standard specifies a number of exceptions already. Amforth provides a Subset

The general way to catch an exception is to call a word by it’s execution token with catch. catch is much like
execute except that it is capable to handle exceptions:

: foo -2883 throw ;
: bar

['] foo catch
?dup if (-- e)
\ ... handle exception or
throw \ re-throw it, leaving bar

then
\ only executed if no exception occured or one got handled
...

;

User supplied exception codes should be in the range -65000 .. -4096. To garantuee uniquness, an exception
number generator should be used. It can be as simple as

-4096 Evalue exception
: exception (-- n) exception dup 1- to exception ;

Every call to exception allocates a new exception number. It can be used as

110 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

exception constant !!foo
exception constant !!bar

... if !!foo throw then ...

... if !!bar throw then ...

Extended VM

At the Euroforth 2008 Stephen Pelc presented a paper http://www.complang.tuwien.ac.at/anton/euroforth/ef08/papers/pelc.pdf
with some interesting extensions to the Forth virtual machine model. He proposed 4 new registers A, B, X, and Y.
They can be used to simply store temporary data. More intelligent use cases arise from certian pointer operations
with auto-increment and auto-decrement facilities.

AmForth adapts these ideas by combining the operations for A and X (B and Y similiarly). All commands are
implemented in assembly using free registers and are included at compile time by adding the line

.include "words/reg-a.asm"

.include "words/reg-b.asm"

They do not depend on other files.

Basic Usage

Both registers A and B act the same way. They are not used inside any standard AmForth code and are not thread
local. Since they use CPU registers, they work faster than variables or other memory based data.

To store data into a register, the command >a is used. Getting back the data is done with a>. Unlike the similiar
looking >r, repeated calls to >a overwrite the register contents.

> a> .
6183 ok

> 17 >a
ok

> a> .
17 ok

>

Pointer Voodoo

The registers can work as address registers. The command a@ reads the RAM location, the A register points to.
By using a@+ the data is read and the register is incremented by 1 cell (2 bytes). Similiar the a@-: the data is read
and the register is decremented by 1 cell.

> : dump swap >a 2/ 0 do a@+ . loop ;
ok

> source dump
7320 756F 6372 2065 7564 706D ok

>

To store data, the commands a!, a!+ and a!- can be used. They store the Top-Of-Stack Element to RAM where
the A register points to and modify it afterwards (if applicable).

The words na@ and na! give access to the memory location n bytes relative to the current value of the A register.
The content of the A register is not changed.

> : dump swap >a 2/ 0 do i cells na@ . loop ;
ok

> source dump

5.3. Programming and Debugging 111

http://www.complang.tuwien.ac.at/anton/euroforth/ef08/papers/pelc.pdf

AmForth Documentation, Release 6.5

7320 756F 6372 2065 7564 706D ok
>

Portable Version

The registers are an extension of the underlying forth VM. There is no official reference implementation available.
To experiment with them, the following code may be useful.

1 cells constant cell

variable reg:a

: >a reg:a ! ;
: a> reg:a @ ;
: a@ a> @ ;
: a! a> ! ;
: na@ a> + @ ;
: na! a> + ! ;

\ post-increment fetch/store
: a@+ cell reg:a +! a@ ;
: a!+ cell reg:a +! a! ;
: a@- cell negate reg:a +! a@ ;
: a!- cell negate reg:a +! a! ;

\ alternativly
\ pre-increment fetch/store
: a@+ a@ cell reg:a +! ;
: a!+ a! cell reg:a +! ;
: a@- a@ cell negate reg:a +! ;
: a!- a! cell negate reg:a +! ;

Amforth has a highly optimizied assembler implementation of these commands.

Un-Doing Definitions

During development and testing it is often desirable to start over again and forget everything. Traditional forth’s
have the word FORGET. Amforth uses another, more modern approach: marker.

marker needs planning. Before use, include the file:‘dict_compiler2.inc into your list of include packages to
generate the hex files. Next upload the file lib/ans94/core-ext/marker.frt. If you encouter errors that
the word set-current is not defined, you forgot to include the file dict_compiler2.inc.

Now the command marker creates a named snapshot of the current memory state to that you can return to any
time afterwards. This includes all definitions and wordlists defined after the snapshot is taken. They get completely
deleted and the occupied memories (flash, ram, eeprom) are available again.

> marker empty
ok

> : foo ." foo" ;
ok

> foo
foo ok
> empty
ok

> foo
foo ?? -13 3
> empty
empty ?? -13 5
>

112 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

Note that the snapshot itself is gone as well. If you want it again, just re-create it.

Forward Declarations

Forward declarations are used to create recursive calls.

forward: foo
: bar foo ;

One solution for this task is Deferred Words.

Edefer foo
: bar foo ;
:noname ... ; is foo

They work usually fine. Furthermore they are based upon standard techniques.

Another solution for forward declarations uses a Just-In-Time (JIT) approach. With it a forward declaration
resolves itself when called without further user (or programmer) interaction:

1 > forward: foo
2 > : bar foo ;
3 > bar
4 found only forward declaration.
5 > : foo ." hey" ;
6 > bar
7 hey
8 >

Line 1 declares foo to be defined later. This foo must not be called directly! The next line defines a word bar
that uses foo. Note that foo is not yet a code definition. The word bar can be safely executed however. When the
program execution of bar arrives at foo, the JIT module starts. This module first gets the name of the forwardly
defined word (foo) and looks it up in the dictionary If find-name gets an XT for foo it is checked whether it is
the XT of the forward: declaration or another one. If it is the XT of the forward: declaration, execution is
aborted with an error message.

If an XT is found, that fulfils the requirements, two things happen: First the call to foo in the callee (bar) is
changed from the original one (that goes to the forward declaration) to the new one that is found by find-name.
Plus the XT is executed itself. As a result, a repeated call to bar will not call the JIT runtime checks again but
hands over directly to the new foo.

foo can be redefined again. Any already resolved references will remain, still not resolved references will resolve
to the new definition:

> forward: foo
> : bar foo ;
> : baz foo ;
> bar

found only forward declaration.
> : foo ." I'm number 1" ;
> bar

I'm number 1 ok
> : foo ." I'm number 2" ;
> baz

I'm number 2 ok
> bar

I'm number 1 ok
> baz

I'm number 2 ok
>

The implementation uses internal data structure knowhow. The word forward: creates words that performs the
above discussed runtime behaviour when called inside another definition. It is assumed that they are only called
within a colon definition.

5.3. Programming and Debugging 113

AmForth Documentation, Release 6.5

: forward:
dp create ,
does>
dup 1- swap @i here iplace here count (copy to temporary ram)
find-name if \ unless some wordlist voodoo ...
swap over = abort" found only forward declaration."
dup r@ 1- !i execute

else
\ can only happen if search wordlist has been changed
true abort" unresolved forward declaration"

then
;

Late Binding

A similiar definition to forward: can be used to implement late binding. In this case a forward reference will
not get permanently resolved but looks up the dictionary every time it get called.

: execute-late:
dp create ,
does>
dup 1- swap @i here iplace here count (copy to temporary ram)
find-name if \ unless some wordlist voodoo...
swap over = abort" found only forward declaration."
execute

else
\ can only happen if search wordlist has changed
true abort" unresolved forward declaration"

then
;

This has a huge runtime penalty since on every invocation a dictionary lookup will be made. An option would be
the use of search-wordlist command instead of find-name if a proper (short) word list exists.

> execute-late: foo
> : bar foo ;
> bar

found only forward declaration.
> : foo ." I'm number 1" ;
> bar

I'm number 1 ok
> : foo ." I'm number 2" ;
> bar

I'm number 2 ok
>

Jump Tables

Author Erich Wälde

Summary: store precomputed values in a flash table / constructing a jump table

I wanted to store precomputed values in a permanent table. In one case the values were precomputed by evaluating
a special declaration syntax. In the other case a list of :noname ... ; Definitions were going to be accessed
through a (jump) table.

For the second problem I wrote down something like

Warning: does not work, please continue to read for the solution!

114 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

create Table
:noname 1 VarA +! ; ,
:noname 2 VarA +! ; ,
...

This is not only naive, but also wrong: I’m mixing the compiled code with the XTs to be stored. So the table
did contain the XTs in the wrong places mixed with the corresponding code. Once I understood this, I came up
with the idea to generate the code and store the XTs in a RAM table first, and then copy the table from RAM to
FLASH. Additionally, the table was initialised with noop as default value, since several entries remained empty,
i.e. had nothing to do. I could have pushed the XTs on the stack, but with >50 entries this did not seem correct to
me. Here we go:

First we define the length of the final table in entries and allocate the corresponding RAM space and proved a
function to fill it with default values (fill would not help here, because fill copies bytes rather than cells):

variable SomeVar \ variables needed by the code snippets should
variable OtherVar \ go BEFORE variable T.ram

#10 constant T.len
variable T.ram T.len cells allot
: T.init

['] noop
T.len 0 do dup T.ram i cells + ! loop
drop

;

The RAM space can be released after producing the flash table, even though T.ram continues to exist as a word.

When compiling the :noname code snippets (think anonymous functions), we want to store the freshly generated
XT at a given location in the ram table. A separate word makes the source code look nice (provisions against
index overflow were added):

: >T.ram (xt idx --)
dup 0 T.len within if
cells T.ram + !

else
drop \ or throw

then
;

To copy the content of T.ram to a new table in flash, the following function will do the work. In expects the
number of items and the source address on the stack and consumes the next token of the source code as name for
the new table.

: >ftable (srcaddr len --) (ccc.name)
create (consumes ccc.name)
(len) 0 do
(srcaddr) dup i cells + @ ,

loop
(srcaddr) drop
does> \ fixme: needed???

;

Now we are equipped to compile the anonymous functions and store the XTs in T.ram:

T.init

:noname #1 SomeVar +! ; #3 >T.ram \ function for field #3
:noname #8 SomeVar +!

#1 OtherVar ! ; #4 >T.ram \ function for field #4

Note that the anonymous functions can be of arbitrary length. The order, in which the fields in T.ram is filled, is
irrelevant. It is not neccessary to fill all fields, since they all were initialized with the XT of noop.

After the table is prepared to our liking, we copy it to flash:

5.3. Programming and Debugging 115

AmForth Documentation, Release 6.5

T.ram T.len >ftable T.flash

The new, permanent table is called T.flash in this example. We can now release T.ram with

T.ram to here

provided we did not define any other variables in the meantime. The XTs in T.flash can be called like this:

: T.run (index --)
dup 0 T.len within if
(index) T.flash + @i execute

else
drop \ or throw

then
;

Port Code From C

There is a lot of C code out there. And there is no easy way to use it in AmForth. This recipe gives some hints for
porting C code. A lot of more examples can be found at Rosetta Code.

Register Names and Bits

AmForth provides the same register names as C. All addresses are memory mapped. Many registers are split into
bitgroups, that got names as well. In C these names are usually bitnumbers, AmForth uses the bitmaps as specified
in the Atmel resource files.

Single bits are straight forward:

C:
TIMSK0 |= (1<<OCIE0); /* set the bit */
TIMSK0 &= ~(1<<OCIE0); /* clear the bit */

AmForth:
\ set the bit
: or! dup c@ rot or swap c! ;
OCIE0 TIMSK0 or!

\ clear the bit
: and! dup c@ rot and swap c! ;
OCIE0 invert TIMSK0 and!

Control Structures

The control structures are basically all the same. The differences are subtle and usually small. Conditional
Execution

C:
if(flag) { foo(); } else { bar(); }

AmForth:
flag if foo else bar then

Counted Loops

C:
for(i=0;i<10;i++) {
foo();

}
AmForth:

10 0 do foo loop

116 Chapter 5. Cookbook

http://rosettacode.org/wiki/Category:Forth

AmForth Documentation, Release 6.5

If the loop increment is not 1, Forth uses the word +loop instead of loop:

C:
for(i=0;i<10;i+2) {
foo();

}
AmForth:

10 0 do foo 2 +loop

Profiler

Sometimes it is useful to watch a word working. The Tracer gives many informations, which may be confusing
or un-usable at all. The number of calls of a given word can be more instructive. This is the time for the profiler
utility.

variable profiling?
: profile:on -1 profiling? ! ;
: profile:off 0 profiling? ! ;

: profiler profiling? @ if 1 swap +! else drop then ;
\ re-define colon
: : :

here 2 allot postpone literal postpone profiler
;

\ get the address of the profiling data.
: xt>prf (xt -- addr)
cell+ @i

;

After loading it into the controller, every colon word gets a counter (1 cell) which is incremented every time the
word is called. Since this cell can be used like any variable, it can be reset any time as well.

> : foo 1 ;
ok

> profiler:on
ok

> ' foo xt>prf @ .
0 ok
> foo
ok

> ' foo xt>prf @ .
1 ok
> 0 ' foo xt>prf !
ok
>

Quotations

Quotations are a programming technique to embed code inside of code. These embedded code snippets have an
execution token but no name token.

Quotations use two new commands [: and ;]:

: foo ... [: some words ;] execute ... ;

This code could be written as

:noname some words ; Constant #temp#
: foo ... #temp# execute ... ;

5.3. Programming and Debugging 117

AmForth Documentation, Release 6.5

Quotations are not (yet) standardized by the forth2012 committee, but they seem to do so in the near future.

The amforth implementation has no dependencies and is used to implement some value-variants: Double Cell
RAM Value and inside the Serial Peripheral Interface SPI

Efficient RAM Usage

RAM is probably the scarcest resource of an atmega. To make the best of it, some additional words may be helpful.

cvariable

cvariable acts like variable but does not allocate a cell (2 bytes) but only 1 byte of RAM. Access to it is
limited to c@ and c!. To indicate the size, one may want to use the Hungarian Notation.

There are a few possible implementations. One uses carnal knowledge of the inner workings, the other one relies
on the fact that 1 cell is 2 bytes RAM in amforth.

: cvariable
here constant 1 allot ; \ carnal knowledge

\ just a variable, but gives one byte RAM back to pool
\ : cvariable variable -1 allot ;

Use of such small variables is just like other ones:

answer cvariable \ allocates 1 byte only!
42 answer c!
answer c@ .

\ troublesome
answer @ . \ undetermined
4242 answer ! \ destroys other data

See also:

Defining and using Arrays and the cvalue section in Values

Recognizer

The Forth text interpreter is able to work with numbers and command words. Its main purpose is to transform
the text representation into a format closer to the system level and deal with them. Numbers are converted to
their binary form for the data stack, command words are found in the dictionary and are further dealt with their
execution tokens (and header flags).

In standard Forth there is no easy way to add new data types to the text interpreter and to associate actions with
them for the different interpreter states. For example there are no native string literals. They are mimicked by
using a command word (s").

A recognizer fills this gap. It consists of two major parts: A word which does the parsing and converting. And a
group of three methods for dealing with the data, the parsing word produces. These methods are used in interpret
and compile state, and to postpone the data in colon definitions.

Amforth has recognizers for dealing with numbers and words from the dictionary built-in. To create and manage
more recognizers, the words get/set-recognizers are used. They work similar to the get/set-order
for word lists.

The word recognizer: takes three execution tokens and defines the method table. The word to parse the
input stream takes a string as input and leaves either the method table r:fail (and no further data) or some data
together with the method table defined with recognizer:. The interpreter takes care of the rest. It is possible
to modify >in inside the parsing word if the data contains whitespace. Debugging such words can be tricky
however.

118 Chapter 5. Cookbook

http://en.wikipedia.org/wiki/Hungarian_notation

AmForth Documentation, Release 6.5

String Literals

A string is delimited by two " symbols. The first one starts the string and the next one is the end of it. Everything
in between is the string content. A string is denoted by its start address and its length. When compiling, the string
needs to copied to the dictionary together with a runtime action.

Since a string can contain whitespace, the parsing word needs to deal with >in. The string address and length is
valid for the lifetime of the SOURCE buffer only, a refill will change the content.

' noop
' sliteral
:noname type -48 throw ;

recognizer: r:string

: rec:string (addr len --)
over c@ [char] " <> if 2drop r:fail exit then
negate 1+ >in +! drop \ expand parse area
[char] " parse \ get trailing delimiter
-1 /string \ remove limiter
r:string

;

' rec:string get-recognizers 1+ set-recognizers

The first line is simply the method table definition. The first two methods are already defined in amforth so nothing
special here. The third method is called when the data is beeing postponed. For now, a string cannot be postponed,
which would essentially lead to a string copy from the defining word to the new one. Instead an exception -48 is
thrown.

The rec:string definition is more complex. The first line

over c@ [char] " <> if 2drop r:fail exit then

is the check whether the current word start with a " character. If it does not, the two arguments are dropped and
the special method table r:fail is returned.

If the first character is a " the main task is to find the delimiting next ". Since the >in needs to be set to the
location of this character as well, we use the word parse which does this work for us.

negate 1+ >in +! drop \ reset parse area to SOURCE

This line re-adjusts the parsing area to the beginning of the word inside SOURCE. The code

[char] " parse \ get trailing delimiter

scans the whole input for the delimiting " and returns it. Finally some address cosmetics has to be done to include
the very first character as well.

Finally the r:string method table is returned together with the string itself. The last command adds the string
recognizer to the list of the recognizers the interpreter uses and activates it this way. Now we can enter strings as
native data without the s" command.

> "foo" type
foo ok

> " foo" type
foo ok

> " foo" type
foo ok

> " foo" type
foo ok

> " foo bar baz " type
foo bar baz ok

> : test " foo bar " itype ;
ok

> test

5.3. Programming and Debugging 119

AmForth Documentation, Release 6.5

foo bar ok
>

Configuration Stacks

In Forth stacks are ubiquitous. Not only the data stack and the returnstack are used but many more can be
found. Some of them hold configuration data like the search order stack which contains the wordlist-id’s for
the interpreter. Amforth got the recognizers as an additional core level stack. All these stacks are placed in the
EEPROM storage and they have a few things in common:

• they are used at system level.

• they are seldom changed.

• they are used with an iterator.

EEPROM Layout

A stack is a contiguus eeprom space. The first cell has the actual stack depth, followed by the stack elements.

\ create a 11 elements stack
> edp constant a-stack 12 cells eallot

The constant a-stack is used to further work with the stack.

Commands

There are three basic stack commands:

• get-stack and set-stack transfer the whole stack content to/from the data stack. That makes it
possible to change the stack with the standard stack commands. Note, that the top-of-stack contains the
actual stack depth.

• map-stack The iterator calls a predefined word for every stack element and leaves the iteration if the
action word tells to do so

get/set-stack

These commands transfer the data to/from the eeprom storage from/to the data stack. Only the actual stack depth
is transferred.

map-stack

The map-stack command is the stack iterator. It calls an execution token for every stack element. The execution
token is expeced to return a flag to decide whether the iteration continues or shall be ended prematurly. The
command map-stack itself leaves a flag that informs about this termination cause. True means that a premature
exit has been done, false means that the iteration was made for all elements.

The execution token is a nice example for Quotations. What it does is to use the stack element and generate a flag.
If the flag is false (0), the data stack should be unchanged to make another iteration possible. If the flag is true
(-1), the data stack can be changed to the final result.

The word called gets the actual stack element as the parameter. A flag is the return value. A true means, that this
call was the last one, a false means, that the stack iteration continues with the next element.

A simple example is printing the word names of the recognizer stack. The EE_RECOGNIZERLISTLEN is a
constant with the EEPROM address of the recognizer stack. The quotation extracts the name and prints it. The

120 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

false flag makes sure, that every stack member is called. Since the final result of the iteration is not relevant, it
gets simply dropped.

: .recs
[: (XT -- false)

>name icount $ff and itype space 0
;]
EE_RECOGNIZERLISTLEN map-stack drop

;

A slightly more complex iterator is the dictionary lookup word. It has to use the addr/len information for each
wordlist from the ORDER stack. That makes it necessary to keep this information inside the quotation.

: find-name (addr len -- xt +/-1 | 0)
[: (addr len wid -- xt +/-1 -1 | addr len 0)

>r 2dup r>
search-wordlist
dup 0<> if >r nip nip r> -1 then

;]
EE_ORDERLISTLEN map-stack
0= if 2drop 0 then

;

Since the quotation already deletes the addr/len from the data stack if the word is found, this cleanup is only
necessary if no word could be found at all.

A similiar example is used for the recognizer stack. The main difference is the other meaning of the stack element
and another iteration abort condition.

: do-recognizer (addr len -- i*x r:table|r:fail)
[: (addr len rec:XT -- i*x r:table -1 | addr len 0)

rot rot 2dup 2>r rot
execute
2r> rot dup r:fail =
if drop 0 else nip nip -1 then

;]
EE_RECOGNIZERLISTLEN map-stack (-- i*x addr len r:table f)
0= if \ no recognizer did the job, cleanup and add r:fail as default result
2drop r:fail
then ;

Testing

For quite some time it is a good practice to write test cases for software for and during the development. With
them a developer can be sure that the words do what they are supposed to do. Forth has a long tradition in this
area starting with the ANSI standard from 1994. John Hayes wrote a tester and defined a test case synatx which
got into widespead use since then.

Amforth has adapted its code with the file lib/ans94/tester-amforth.frt. The changes from the orig-
inal are rather minor: Turn all keywords into lowercase.

Prepare for Tests

The tester requires only marker which is defined in file:lib/ans94/core/marker.frt. There are no further depen-
dencies.

Using Test Cases

The tester uses 4 words:

TESTING add your comment here is a “talking comment” to make the output somehow look nice.

5.3. Programming and Debugging 121

AmForth Documentation, Release 6.5

t{ starts a new test. Prepare the stack and call your function, then

-> indicates that the test code is complete. Add the remaining stack after this word.

}t completes the test by comparing the stack with the expected stack. If everything is well, the ok prompt will
appear.

A test summary is not printed, but that could

Write a file with your new library function, e.g.

\ function.frt
\ define some new function
: plus + ;

Then write the test cases, e.g.

\ function-test.frt

\ load the tester from lib/ans94/tester
#include tester-amforth.frt

\ load the code under test
#include function.frt

\ run the tests
TESTING the tester ---

t{ 1 1 + -> 2 }t
t{ 1 1 plus -> 2 }t
t{ 1 1 plus -> 3 }t \ incorrect
t{ 1 2 plus -> 3 }t \ tester contiues
t{ $FFFF 1 plus -> 0 }t
t{ 1 2 3 4 plus -> 1 2 7 }t

Now load the file function-test.frt to the controller and watch the show.

TESTING the tester ---
ok

> t{ 1 1 + -> 2 }t
ok

> t{ 1 1 plus -> 2 }t
ok

> t{ 1 1 plus -> 3 }t
INCORRECT RESULT: t{ 1 1 plus -> 3 }t
ok

> t{ 1 2 plus -> 3 }t
ok

> t{ $FFFF 1 plus -> 0 }t
ok

With the command -ans-tester everythings gets unloaded and is ready for the next run.

Acknowlegment

This recipe is based upon an email from Erich Wälde on the amforth-devel mailing list.

Tracer

Sometimes it is useful to watch a word working. A simple trace utility that prints the name of the word and the
stack content at the beginning helps to get important information.

122 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

\ flag to dynamically turn trace output
\ on and off
variable tracing?
: trace:on -1 tracing? ! ;
: trace:off 0 tracing? ! ;
: tracer tracing? @ if cr itype cr .s else drop drop then ;

\ save the name of the word for use in tracer
: : >in @ >r : r> >in !

parse-name postpone sliteral postpone tracer
;

After loading these few lines into the controller, every word being defined afterwards prints it’s name and the stack
content at runtime.

> : foo 1 ;
ok

> : bar 2 foo ;
ok

> : baz 3 bar ;
ok

> trace:on
ok

> baz

baz

bar
0 2221 3

foo
0 2219 2
1 2221 3
ok

> .s
0 2217 1
1 2219 2
2 2221 3
ok

> trace:off
ok

> baz
ok

>

It requires amforth version 4.7 and up. (sliteral is missing in earlier versions).

This tracer is based on posts from Emma Ledwidge and Gerry in the usenet group comp.lang.forth in January
2012.

Upgrade AmForth

You may want to upgrade AmForth if you encounter a bug that is fixed in a later revision or want to make use of
a certain new feature. In this recipe I assume that you use the standard filesystem layout.

The first step is to unpack the new release archive into a new directory. Do not try to overwrite an existing
installation. The 2nd step is a full copy of the Atmel/ directory from your existing installation into the new tree.
This copy has to include the Appnotes*/ directories and the avrasm32.exe file from Atmel. These files are
verbatim copies from an Atmel AVR Studio installation and are not included into the AmForth distribution (guess
why).

The next step is to make sure, that the template sample application can be compiled without problems. If you
encounter any error, fix it first. If everything went well, you can copy your application directory from the old

5.3. Programming and Debugging 123

AmForth Documentation, Release 6.5

tree into the new directory tree and carefully re-apply all changes that the template application has got since you
started your own application. The major source for information is the change log on the AmForth Webpage and
the Source Code Repository.

Unbreakable AmForth

This recipe gives some hints how to protect AmForth from being (partially) destroyed and to be able to recover
from accidents without re-flashing the system.

Flash protection

The first line should be a flash protection. It prevents the !i to write to places where it should not. This can be
done by creating a new word, that does some bounds checking and does the final write command only if everything
is ok.

\ write protect everything up to this command
: save-!i [dp 12 +] literal over <

if (!i-nrww) else -20 throw then ;
' save-!i is !i

After these few lines, all flash up to this definition is now write-protected. All forbidden access will generate an
exception. The offset added makes sure that our new command protects itself as well.

The code in the NRWW section (file:dict_appl_core.inc) is already write protected, the controller itself makes
sure of that. A write attempt to this locations does not generate an exception, it will be ignored silently.

EEPROM protection

Protect the EEPROM is more difficult. AmForth rewrites a few cells during normal development, which makes a
simple write protection as described for the flash rather useless. Furthermore AmForth uses the EEPROM content
at very early stages in the boot process. Any safety action needs thus be hard-coded in warm and it will need a
trigger to start the EEPROM recovery. This could be a check for some data or a hardware based information.

As long as the command prompt works, the data that got saved by a marker definition is sufficient to reset to a
working system.

Values

The standard VALUE gives access to memory content like a variable does. The difference between these two is
that a value gives a actual data whereas a variable leaves the address of the data on the stack. The place, where a
value stores the data is usually not known. There is only one way to change it: use of TO.

> 42 Evalue answer
ok

> answer .
42 ok

> 4711 to answer
ok

> answer .
4711

>

This resembles the intended usage pattern for EEPROM: Write seldom, read often.

The forth standard defines a few value types: 2VALUE for double cell data, FVALUE for floating point numbers
and the single cell sized VALUE itself. They all use the same TO command to change their content. This requires
a non-trivial implementation to achieve it. Amforth uses a simple data structure for each value in the dictionary
(flash), almost identical to the one used by defer. The first element contains the address of the actual data.
This first field is followed by 2 execution tokens (XT) for the read and write operations. This makes the runtime

124 Chapter 5. Cookbook

http://amforth.sf.net
http://sf.net/p/amforth

AmForth Documentation, Release 6.5

operations fairly easy. The read operation (the 2nd element in the data structure) is called with the address of the
1st element. It is expected that the read operation leaves the data on the data stack. Similiar the write operation.
The TO command simply executes the write execution token (the 3rd element). The similarities between values
and defers goes as far as to and is are in fact identical and can be used with both.

This generic approach allows not only single cell data in EEPROM but any data everwhere. The following exam-
ples illustrate this with an implementation of a value that stores a single byte in RAM and a cached version of the
standard EEPROM value. They have in common that calling their names give the data and applying TO to them
stores new data.

cvalue

Cvalues store a single byte in RAM. The first element in the value data structure in the dictionary is the address of
the RAM byte. The defining word allocates it. Like any other RAM based data its content is not preserved over
resets and restarts.

\ two helper functions, not called directly
: c@v @i c@ ;
: c!v @i c! ;

: cvalue (n "name" --)
(value) \ create a new wordlist entry
here , \ the address of the RAM memory
['] c@v , \ method for the read operation
['] c!v , \ method for the write (TO) operation
here c! \ initialize the RAM content
1 allot \ formally allocate the RAM byte

;

Using this new value is straight forward:

> 42 cvalue answer
ok
> answer .
42 ok
> 17 to answer
ok
> answer .
17 ok
>

After its definition the new size restricted value is used like any other value. To read it, simply call its name. To
write to it, use the TO command. As a bonus, all operations are save against overflows:

> $dead to answer
ok
> hex answer .
AD ok
>

cached Value

A cached value is a value that stores the data in EEPROM but tolerates heavy write access by using a RAM cell as
a cache. This RAM cell gets all write operations. The eeprom is not written until an explicit flush is performed.
At startup the cache needs to be warmed, this is not done automatically.

\ 2 is a magic number
: @cache 2 + @i @ ;
: !cache 2 + @i ! ;

\ cache related words

5.3. Programming and Debugging 125

AmForth Documentation, Release 6.5

: flush-cache 1+ dup 2 + @i @ swap @i !e ;
: warm-cache 1+ dup @i @e swap 2 + @i ! ;

: cache-value
(value) \ create the vocabulary entry
dup ehere dup , dup cell+ to ehere !e \ allocate an EEPROM cell.
['] @cache , \ XT for the read method
['] !cache , \ XT for the write methon
here 2 (1 cell) allot dup , ! \ allocate a RAM cell and initialize it

;

The following example session creates a cached value and demonstrates the content of the two memory’s during
normal execution.

> ehere \ keep the eeprom address for later direct access
ok

> 42 cache-value c-dp
ok

> 17 to c-dp
ok

> c-dp . dup @e .
\ RAM and EEPROM contents are different!
17 42 ok

> ' c-dp flush-cache
ok

> c-dp . dup @e .
17 17 ok

>

Note that there is a difference in programming style between the load/store and the addiional warm/flush opera-
tions. The latter use a code sequence like

' value method

instead of the standard TO schema

method value

Its fairly simple to achieve the TO schema for the other commands as well, but since this requires a parsing word
(which is state smart too) the forth gurus consider this suboptimal. A second argument against may be the growing
acceptance of the OO notation object method with object beeing kind of an address.

: flush
' state @ if
postpone literal postpone flush-cache

else
flush-cache

then
; immediate

Double Cell RAM Value

A very compact implementation (a single short word) makes use of Quotations:

\ a value in RAM with 2 cells data storage
\ requires quotations and 2@/2! from double wordset

: 2rvalue (d --)
(value)
here ,
[: @i 2@ ;] ,
[: @i 2! ;] ,

126 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

here 2! 4 allot
;

This value stores a double cell information in RAM. The read and write methods are embedded as quotations.

See also:

I2C EEPROM VALUE Quotations

Walking Wordlists

Wordlists are the building block of the dictionary. A wordlist is a single linked list of entries. Entries are compiled
colon words, assembly words or data structures created with create. The link chain ends when the next pointer is
zero. A wordlist grows usually upward in the flash memory, while the links point downwards.

The anchor of a wordlist is the stored in an EEPROM cell, which address is the wordlist identifier.

Walking a wordlist requires the following steps

1. get the WID (e.g. environment)

2. read the starting address from the EEPROM (line 2) It the name field address of the first word.

3. start the loop until zero is reached (lines 4+5)

4. keep the vital iterator data (line 6)

5. do some work with the entry, consuming the NFA-copy from the previous line (line 7)

6. go to the next entry (line 8)

7. repeat the loop body

The implementation of the word show-wordlist may illustrate this:

1 : show-wordlist (wid --)
2 @e
3 begin
4 ?dup
5 while
6 dup
7 icount $ff and itype space
8 nfa>lfa @i
9 repeat

10 ;

The sequence $ff and masks the entry flags (e.g. immediate) and extracts the actual string length for use with the
following itype.

Way easier is using the traverse-wordlist available since amforth version 5.2. With it, the above changes
to

\ print the name of a single wordlist entry
: show-word (nt -- flag)

name>string itype space
true \ see spec of traverse-wordlist

: show-wordlist (wid --)
['] show-word swap traverse-wordlist

;

Watcher

A Watcher is a tool that monitors the access to a memory region. If a predefined memory location is accessed
(read, written to or both) something is done in addition. In its simplest case, a message is printed.

5.3. Programming and Debugging 127

AmForth Documentation, Release 6.5

The next few code lines use a single watch address. Any access to it is trapped and calls the Debug Shell.

\ core routines
variable watch-addr
defer watch-action
\ redefine memory access words
: ! dup watch-addr @ = if watch-action then ! ;
: c@ dup watch-addr @ = if watch-action then c@ ;
: c! dup watch-addr @ = if watch-action then c! ;
\ this one is the last one
: @ dup watch-addr @ = if watch-action then @ ;
\ simply use the debugshell
' ?? is watch-action

\ possible modifications
\ use an address range
\ use a list of addresses (address ranges)

After loading these lines, any word that uses memory access words will be watched for access to a particular
address. If it is accessed, the debug shell will come up for further work.

Hardware Modules (AVR)

Dallas 1-Wire Devices

Dallas 1-Wire devices use 1 wire (besides ground level) to connect a peripheral device with the hostmaster. A
common use case are the temperature sensors DS18[S|B]20. The communication protocol between the device and
the micro controller is simple but at some points very timing sensible.

The typical wiring is shown in the picture. The pull up resistor is recommended as well as the connection to VCC.

This recipe is based upon work from Brad Rodriguez for the 4C4th project. He split the 1-wire module into two
parts: a bit level layer for all the dirty, time critical work with only 2 small assembly words, and all other stuff
in portable forth code. Despite the fact, that he uses another controller type, the forth code remained almost the
same.

To use the 1-wire module new AmForth hexfiles have to be created with the file drivers/1wire.asm included
into your project master file (e.g. template.asm) All configuration is done with 2 constants that are set in the
same file. They define, which pin is connected to the 1-wire bus. There are no defaults

; Port and Pin for the 1-wire bus.
.equ OW_BIT=4
.equ OW_PORT=PORTE

.include "drivers/1wire.asm"

After burning the new system into the controller, two new words are available: 1w.reset and 1w.slot. The
1w.reset reinitializes the 1-wire bus and gives a flag, whether at least one device is present or not. It would not
make much sense to continue, if no device is recognized.

: 1wirejob ... 1w.reset if
do-the-job

then ... ;

The 1w.slot writes the LSB to the 1-wire bus and reads one bit back, if a 1 was written. It turns off all interrupts
for approx 60 microseconds to achieve the correct timing. The lower byte of the TOS is rotated so repeated calls
to 1w.slot can transfer all bits of a bytes without further code. It is probably the smartest word of the whole
package.

128 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

: 1w.touch (c1 -- c2)
1w.slot 1w.slot 1w.slot 1w.slot
1w.slot 1w.slot 1w.slot 1w.slot ;

: 1w.put (c --) 1w.touch drop ;
: 1w.get (-- c) $ff 1w.touch ;

1-Wire Tools

The first useful tool is the low level 1w.reset. It checks whether at least one 1-wire device is present and
working or not. Other useful tools are in the file 1wire.frt. They perform a ROM search to print all ROM id’s
of the connected devices.

(ATmega1280)> hex 1w.showids

10 11 E5 68 2 8 0 2A
28 4C 75 CC 2 0 0 CD

ok
(ATmega1280)>

Code specialized for temperature sensors is in the file 1wire-temp.frt. Keep in mind, that at least 2 different
sensor types are available with different result encoding’s. The code is not currently capable to take care of the
differences.

> hex create sensor2 28 , 4C , 75 , CC , 2 , 0 , 0 , CD ,
ok
> decimal sensor2 1w.convert 750 ms sensor2 readtemp temp>pad pad count type

5.4. Hardware Modules (AVR) 129

AmForth Documentation, Release 6.5

18.0 ok
>

Possible Improvements

The module opens the door to the 1-wire world. It is by far not complete or finished. Some things could (or
should?) be done better. Feel free to improve them and share them, please.

Command IO

The standard command IO uses interrupt driven receive and polled send. The receive interrupt fills an 16 byte
long ring buffer. The KEY and KEY? words are vectored to code that checks this buffer and acts accordingly.

: isr data-port c@ >rx-buf ;

The KEY and KEY? words can check whether there are unread characters in the buffer and act accordingly.

Digital Ports

Atmegas have digital ports each with 8 individual pins. They that can be configured as input and output pins. To
make an easy use of them, amforth has a small library bitnames.frt in the lib directory.

The name port indicate that only IO ports can be used with this library. Since the addresses used are RAM
addresses, the whole address can be used, not only the IO range. The addresses are accessed on byte level. For
single bits (portpin: definitions) the bitnumber can exceed the 8 bits a byte can hold. In this case the address is
increased to a value that contains the bit specified: e.g. bit 24 of address 80 is the same as bit 0 of address 83.
Bitmaps are bound to the byte they address.

PORTB 1 portpin: led

Output pins

The simplest hardware is a LED connected to one pin. The following sequence initializes the pin and turns the
LED on:

130 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

> PORTB 1 portpin: led
ok

> led is_output
ok

> led low

To turn it off, simply execute

> led high

Input pins

Input pins are used to get the voltage state: High or Low. A simple hardware would be as follows:

VCC
^
|
+-+
| |
| |
+-+

| |
0 +-----------+

| |
\

Port \
+ \>
|
|

GND

The resistor is not really needed, the pin can be configured to use an internal resistor.

> PORTB 0 portpin: mykey
ok

> mykey is_input
ok

> mykey pin_pullup_on

If the key is not pressed, the resistor (either the internal pull up or the external resistor) drives the voltage to high.
If you read the pin, you will get a 1 in this example:

> mykey pin@ .
1 ok

if the key gets pressed, it will connect the controller pin with ground level, giving a 0

> mykey pin@ .
0 ok

Bit Pattern

The library can deal with bit patterns as well.

+-----+-----+-----+-----+-----+-----+-----+-----+
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
+-----+-----+-----+-----+-----+-----+-----+-----+

> addr $0f bitmask: addr-low
> %01000000 addr c! \ set all bits at addr

5.4. Hardware Modules (AVR) 131

AmForth Documentation, Release 6.5

> $ff addr-low pin! \ set only a few bits
> $03 addr-low pin!

The pin! command changes the bits to the value given only for those bits which are set to 1 in the bitmask. In this
example, only the lower 4 bits are changed, the upper ones are left unchanged:

+-----+-----+-----+-----+-----+-----+-----+-----+
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
+-----+-----+-----+-----+-----+-----+-----+-----+

+-----+-----+-----+-----+-----+-----+-----+-----+
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
+-----+-----+-----+-----+-----+-----+-----+-----+

The same masking policy applies to pin@. Internally the portpin definition is converted into a bitmask. The words
high and low which set resp. clear the bitpositions are optimized versions of pin!:

: high $ff rot rot pin! ;
: low $00 rot rot pin! ;

Note: The extended bit range for single bits are available in amforth 5.3 or later. The file bitnames.frt works with
older version too.

EEPROM

This recipe is about the internal EEPROM storage of the atmega’s. It does not deal with external devices such as
I2C or SPI EEPROM chips.

The EEPROM contains usually 512 to 2048 bytes, depending on the actual controller type. The address range
goes from zero (0) upwards and is independent of the other memory regions flash and RAM. The address unit is
the byte, just like RAM. There is no alignment involved.

The usage pattern of the EEPROM is write seldom read often. which is slightly different from flash (write almost
never, read very often) and RAM (read and write very often). Any data written to EEPROM is kept over reset and
power off.

built in’s

The basic words to access EEPROM are @e and !e. They operate with the standard 2 bytes forth cells to read and
write data. There is no byte-level access.

2 @e u.
64 82 !e

Amforth uses EEPROM internally already. To keep track of the free memory area the command ehere gives the
first free EEPROM address.

> ehere u.
82 ok

>

The following commands manage EEPROM space: Edefer and Evalue. Evalue is works according to the
ANS94 standard word value.

> 1 Evalue one
ok

> one u.
1 ok

> 17 to one
ok

> one u.

132 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

17 ok
>

The Edefer word defines a word that, when called executes another word by its execution token. Amforth uses
this technique to implement the turnkey action.

your own stuff

To use EEPROM storage without Evalue or Edefer, the command ehere is the building block. It is the
pointer to the first unused byte in the EEPROM. It is itself a Evalue that can be adjusted with to to allocate (or
free) address space.

> : Eallot ehere + to ehere ;
ok

> ehere u. 17 Eallot ehere u.
84 101 ok

> 84 constant my-eeprom
ok

> my-eeprom u.
84 ok
>

Adjusting ehere as described above is consistent with later use of Evalue and Edefer.

Arrays

Arrays can be placed in EEPROM as well

> : Ebuffer: ehere constant Eallot ; (n --) (similar to buffer: from forth200x)
ok

> 42 Ebuffer: my-array
ok

> : my-array-@ cells my-array + @e ;
ok

> : my-array-! cells my-array + !e ;
ok

>

The recipes Defining and using Arrays and Values may give further ideas.

Note: Evalue was called simply value in revisions earlier than 5.3. Eallot was Ealloc and did leave the start
address of the allocated memory region.

Efficient Bit Manipulation

Idea and Implementation: Enoch

Some Atmegas have a number of General Purpose IO Registers. They are not connected to any hardware but can
be used with special instructions. They are executed in one CPU cycle and have the additional advantage to be
interrupt safe.

This solution differs from the bitnames approach in that it does not operate on addresses but creates new commands
that do so.

PORTA 0 port:hi! relay_on
PORTA 0 port:lo! relay_off

A bitname solution would look like

5.4. Hardware Modules (AVR) 133

AmForth Documentation, Release 6.5

PORTA 0 portpin: relay
: relay_on relay high ;
: relay_off relay low ;

The implementation of the first solution generates highly optimized machine code. The bitname solution is more
generic but significantly slower and is not interrupt safe.

: port:hi (portadr bitno --) \ SBI
swap $20 - 3 lshift or $9A00 or code , end-code

;

: port:lo (portadr bitno --) \ CBI
swap $20 - 3 lshift or $9800 or code , end-code

;

Additionally some range checks should be applied to make sure that the instruction does actually work as it should
be

: _bitio
dup $1F U> if &-9 throw then
over $7 U> if &-9 throw then

;

: port:hi (portadr bitno --) \ SBI
swap $20 - _bitio
3 lshift or $9A00 or
code , end-code

;

: port:lo (portadr bitno --) \ CBI
swap $20 - _bitio
3 lshift or $9800 or
code , end-code

;

I2C EEPROM Blocks

Stores Blocks in I2C serial EEPROM attached to TWI.

Code

A quick start with the amforth-shell is as follows

(ATmega16)> #include i2c-eeprom-block.frt
.... lots of files included, approx 1,5kB dictionary space
... for testing and inspekting
(ATmega16)> #include list-dump.frt \ from lib/ans94/block
... loading code and dependencies
ok

Configuration

The I2C hardware drivers need two initialization steps. The first is the I2C/TWI hardware init (i2c.init
or simply i2c.init.default) and the device init as i2c.ee.blockinit. After these two commands,
which need to run before use in e.g. turnkey, the I2C memory modules can be accessed.

> i2c.init.default \ initialize TWI hardware module in slow speed
> 24c64 $50 i2c.ee.blockinit \ set up for block level access

134 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

Place these two commands (or similar ones) in the application turnkey word. The parameters to the
i2c.ee.blockinit are the page-size (there are some convenient constants, see below) and the I2C hardware
id ($50). All subsequent access to the device depend on these information. They can be changed any time.

More Information is in the recipe Blocks.

The specs of almost every serial EEPROM mention, that after a write action, 5 milliseconds have to pass before
the next access can be made. The library takes care of this for every page written. It splits the the data transfer
of the (possibly) larger buffer size to the actual page size of the controller too. To configure the page sizes, the
command i2c.ee.setpagesize has to be used. It takes the page size in bytes as the parameter. To make the
source code more readably, constant names like 24c64 are provided.

Device Type Size Page Size
24c08 1KB 16
24c16 2KB 16
24c32 4KB 32
24c64 8KB 32
24c128 16KB 64
24c256 32KB 64
24c512 64KB 128
24c1024 128KB 256

The code assumes 2-byte addresses inside the memory and a single I2C hardware address (0x50). Modules which
use multiple I2C addresses work within the limits of a single address.

See also:

Two Wire Interface TWI/I2C I2C EEPROM VALUE

I2C Bus Scanner

The word i2c.detect from file i2c-detect.frt provides a nicely formatted overview of all connected
I2C devices.

(ATmega1280)> i2c.init.default
ok

(ATmega1280)> i2c.detect
0 1 2 3 4 5 6 7 8 9 A B C D E F

0: -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- 27 -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 51 -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
ok

(ATmega1280)>

In this example, two devices are connected: a port expander (PCF 8574) and two EEPROMs (a 24c64 and a ST
4128 BWP).

The missing addresses are excluded since they are not valid I2C 7-bit device addresses. They are not probed as
well.

A similar command exists on Linux platforms.

See also:

Two Wire Interface TWI/I2C, I2C Generic

5.4. Hardware Modules (AVR) 135

AmForth Documentation, Release 6.5

I2C EEPROM

I2C EEPROMs are attached to the I2C bus (TWI). They provide usually a few KB of storage which can be re-
programmed quite often (millions of write cycles). Some chips can be reprogrammed withouts limits (FRAM’s).

Every I2C module has one (or more) hardware identifier(s). This address is needed to select one chip of possibly
many on the bus.The default for EEPROMs is $50. If a chip is selected, the actual memory address and the data
are transferred. The current I2C library works with chips that use a 2 byte address. Consult the datasheet, if in
doubt. EEPROMs with only one I2C address (i2c.detect) and at least 8 Kbit (1 KByte) should work.

Special care must be taken when data is written across the EEPROM internal page boundaries. Most EEPROM
will wrap around the read and write operation to the beginning of the current EEPROM page. For this library only
the block access words know about eeprom pages.

Source Code

The source code for the EEPROM is in the file lib/hardware/i2c-eeprom.frt. It depends on
lib/hardware/i2c.frt. It is recommended to use the amforth-shell to upload the file since it automati-
cally resolves all dependencies.

(ATmega16)> #include i2c-eeprom.frt
.... lots of files included
ok

(ATmega16)>

Runtime

Using the eeprom requires the setup of the TWI module of the controller.

(ATmega16)> i2c.init.default \ initialize TWI hardware module in slow speed
ok

(ATmega16)>

When the I2C system works (check with i2c.detect from I2C Bus Scanner) everything is ready to store data.
A more convenient method to handle more data is what the I2C EEPROM Blocks provide.

Access

There are words for 1 byte data and cell sized (2 bytes) data. They need two address information: the hardware id
(usually $50) and the address within the selected device.

c@i2c.ee (addr hwid - c) Fetch a byte from addr using the I2C module identified with hwid

c!i2c.ee (c addr hwid –) Store a byte at addr using the I2C module identified with hwid

@i2c.ee (addr hwid - n) fetch a cell from addr using the I2C module identified with hwid

!i2c.ee (n addr hwid –) Store a cell at addr using the I2C module identified with hwid

Warning: Note that the write operations do not wait. Most (but not all) I2C memory modules require a 5
millisecond delay after a write before the next access can be made.

See also:

I2C EEPROM Blocks and I2C EEPROM VALUE

136 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

I2C Generic

The basic low-level words provide a rather raw access to the I2C bus and its devices. Since the bus has some
standard actions, which are always the same, some combinations are useful factors.

i2c.begin (addr –) start a I2C communication with the device addr. This involves sending the start condition
and the address with the write bit cleared.

In addition, the variable i2c.current gets the addr information to be available for user applications.

i2c.begin-read (addr –) start a I2C read communication with the device at addr. This means that the
device address is used with the read bit set.

i2c.end (–) The communication ends with sending the I2C stop condition and the bus is released. The variable
i2c.current is cleared.

With these commands an I2C transaction becomes

i2c.hw.id i2c.begin i2c.end

Inside the begin/end scope, the basic I2C routines for writing (i2c.tx) and reading can be used. They work with
the device selected with i2c.begin.

Most I2C devices use rather small data packets they exchange with the host. It’s not uncommon to place the data
on the data stack instead of providing a RAM buffer.

For these tasks the following words are provided. They to work within the begin/end scope described above.

i2c.c@ (addr – c) Start a bus cycle and read one byte from the device. Afterwards release the bus.

i2c.c! (c addr –) Start a bus cycle and write one byte to the device. Afterwards release the bus.

i2c.n! (x_n .. x_1 n addr –) Start a bus cycle and send n bytes to the device. Afterwards the STOP condition
is sent and the bus is released.

i2c.n@ (n addr – x_n .. x_1) Start a bus cycle and receive n bytes from the device. To acomplish that, a start
is triggered with the read bit of the addr set. Afterwards the STOP condition is sent and the bus is released.

i2c.m!n@ (n xm .. x1 m addr – x1 .. xn) A combination of the two above. It creates the I2C transaction scope
and sends m bytes to the device. Afterwards the data transfer direction is switched by sending a repeated
start and n bytes are read from the device. Finally the STOP condition is sent and the bus is released.

Example - Port Expander

This example communicates with an I2C port expander PCF8574(a). The I2C address is usually between $30 and
$3f.

Communication is not time critical, so the slow speed standard initialization is sufficient. To chack whether the
device is present and works properly, an I2C bus scan is made first

(ATmega1280)> i2c.init.default
ok

(ATmega1280)> i2c.detect
0 1 2 3 4 5 6 7 8 9 A B C D E F

0: -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- 27 -- -- -- -- -- -- -- --
30: 30 -- -- -- -- -- -- -- -- -- -- -- -- 3D -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 51 -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
ok

(ATmega1280)>

5.4. Hardware Modules (AVR) 137

AmForth Documentation, Release 6.5

A modification uses the value design pattern. With that, a new value is created that automatically fetches the data
from the device when called and stores the new bit pattern with TO:

#require value.frt
#require quotations.frt

: i2c.cvalue (n addr hwid --)
(value)
dup , \ store the hwid
[: dup @i (hwid) i2c.c@ ;] ,
[: dup @i (hwid) i2c.c! ;] ,
i2c.pe.c! \ store inital data

;

Use it as follows

> $ff $3d i2c.cvalue keys (sets all bits to HIGH)
ok
> $00 to keys (set all bits to LOW)
ok
> keys $01 and (if key 1 is pressed)

Big Data

Big data means that a device sends or receives more data than the data stack can hold. In this case, the i2c.begin
and i2c.end in combination with the low level i2c.tx, i2c.rx etc should be used. One example is the I2C
EEPROM block driver. It transfers 512 bytes in one transaction and uses a RAM buffer to actually hold the data.

See also:

I2C EEPROM, I2C Bus Scanner, and I2C EEPROM Blocks. Values I2C Slave

I2C Slave

The TWI module of the Atmega’s allows slave operations as well. Unfortunately it is a lot more complex to setup
and use. Basically an interrupt routine does all the work needed to receive and send data.

Initialization

The I2C slave mode needs only the address. This address has to be in the 7 bit range of the i2c address space. Any
address will do.

> $42 i2c.slave.init

With that, an I2C Bus Scanner from the master’s side reveals the presence of an device at address $42.

(ATmega1284P)> i2c.detect
0 1 2 3 4 5 6 7 8 9 A B C D E F

0: -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- 27 -- -- -- -- -- -- -- --
30: 30 -- -- -- -- -- -- -- -- -- -- -- -- 3D -- --
40: -- -- 42 -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 51 52 -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
ok

138 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

Data exchange

This section describes work-in-progress. The design may change considerably in the future, check the actual code.

Circular buffer

The I2C slave mode uses a small circular buffer for data exchange. Bytes received are appended to it, wrapping
around after 16 bytes. Every I2C read reads from it.

On the client side there are three words: i2c-in i2c-out and i2c-buffer. The last one is the base address
of the i2c send/receive buffer. The i2c-in points into that buffer at the most recently received byte. Similarly
the i2c-out points to the most recently read byte. Both pointers wrap around if the buffer size is reached.

Direct Address

TBD, Idea: send a start address and start reading from or writing to it until NACK. The EEPROM 24Cxx protocol
is probably a good starting point.

I2C EEPROM VALUE

A nice feature of the VALUE concept is that the storage where the data is actually kept is not disclosed. That
makes it easy to create a VALUE that behaves exactly like any other VALUE and keeps the data in an external I2C
EEPROM.

#require value.frt
#require quotations.frt
#require ms.frt
#require i2c-eeprom.frt

\ 17 0 $50 i2c.value "name"
: i2c.ee.value (n addr hwid --)
(value)
over , \ store the addr
[: dup @i (addr) swap 3 + @i (hwid) @i2c.ee ;] ,
[: dup @i (addr) swap 3 + @i (hwid) !i2c.ee 5 ms ;] ,
dup , \ store hwid
!i2c.ee \ store inital data

;

The #require directives are processed by the amforth-shell, of you don’t use it, comment them out and make sure
that the files and their further dependencies are sent to the controller beforehand.

Note the 5 ms delay after writing the data. This is to make sure that the EEPROM gets enough time to complete
its internal activities.

The use is straightforward. Since there is no memory manager for the serial EEPROM, the location of the data is
given explicitly when creating the value: address 0 on the device with the hardware id $50.

(ATmega16)> $beef 0 $50 i2c.ee.value answer
ok

(ATmega16)> answer hex u.
BEEF ok

(ATmega16)> $dead to answer
ok

(ATmega16)> answer hex u.
DEAD ok

(ATmega16)>

5.4. Hardware Modules (AVR) 139

AmForth Documentation, Release 6.5

Don’t forget to initialize the I2C hardware before use (e.g. in turnkey). Keep in mind, that the data stored in a
value is much smaller than the page size of the EEPROM modules. Take care that the address used to place the
data doen’t cross the page boundary. Otherwise a wrap-around will happen and likely other data gets currupted.

See also:

I2C EEPROM, I2C EEPROM Blocks, Two Wire Interface TWI/I2C, and Values

Interrupt Service Routines AVR8

See also:

Interrupt Service Routines

\ TIMER_0 example
\
\ provides
\ timer0.tick -- increasing ticker
\
\ older mcu's may need
\ TCCR0 constant TCCR0B
\ TIMSK constant TIMSK0

variable timer0.tick

: timer0.isr
1 timer0.tick +!

;

: timer0.init (preload --)
0 timer0.tick !
TCNT0 c! \ preload
['] timer0.isr TIMER0_OVFAddr int!

;

\ some settings for 8bit timer to
\ get 1ms ticks
\ f_cpu prescaler preload
\ 16MHz 64 6
\ 8MHz 64 131

: timer0.start
0 timer0.tick !
%00000011 TCCR0B c! \ prescaler 64
%00000001 TIMSK0 c! \ enable overflow interrupt

;

: timer0.stop
%00000000 TCCR0B c! \ stop timer
%00000000 TIMSK0 c! \ stop interrupt

;

All interrupts are available for forth interrupts.

int! (and friends) uses the interrupt address from the data sheet as an index, but points to a different address in
EEPROM. The index number is always identical to the interrupt number found in the data sheets.

See also:

Shells And Upload to deal with the register names.

140 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

Interrupt Critical Section

There are situations where no interrupts should be allowed. These code segments are usually called critical
sections.

: bar ." bar" int? . ;
: baz ." baz" int? . ;
: qux ." qux" int? . ;

: foo \ prints bar-1 baz0 qux-1.
bar
critical[

\ nothing will disturb us here
baz

]critical \ now interrupts or other things may happen again
qux ;

If the standard interrupt enabled system setup is used, calling foo should print bar-1 baz0 qux-1. baz can
call words that use the critical[] word pair itself.

To temporarily turn off interrupts, the current state has to be stored. Since the critical section could be nested, a
global variable is not the best solution. The following code example stores the information on the return stack.
This requires some stack shuffling since a colon word is usually not allowed to manipulate the return stack outside
of its own scope. This is the reason, why the critical section must be paired within one definition afterwards.
Otherwise the return stack will have data that crashes the system.

\ global interrupt enable state as forth flag, AVR8
: int? (-- f)

SREG c@ SREG_I and 0> \ use the amforth-shell for the constants
;
\ the MSP 430 works similar
\ : int? sr@ 8 and 8 = ; \ sr@ : status register fetch

: critical[\ (--) R(XT -- f XT)
r> int? >r >r \ keep the current state
-int

;

:]critical \ (--) R(f XT -- XT)
r> r> if +int then >r \ will crash if not matched

;

A possible modification is to add the PAUSE vector as well and turn off the cooperative multitasker during the
critical section.

: critical[\ (--) R(XT -- n*f XT)
r> int? >r \ save current state of interrupt and multitasker
['] pause defer@ >r >r
-int single \ no interrupts, no task switches

;

:]critical \ (--) R(n*f XT -- XT)
r>
r> ['] pause defer! \ restore multitasker
r> if +int then \ restore global interrupt flag
>r \ will crash if not matched

;

Saving Power

The Atmegas have a number of power saving options. All of them are available with the sleep instruction. Amforth
has a wrapper word with the same name which works on newer atmegas only. You can simply include the file

5.4. Hardware Modules (AVR) 141

AmForth Documentation, Release 6.5

words/sleep.asm into your dict_appl.inc file and try assembling. If it does not produce an error, the
sleep instruction can be used.

The next step is a system that uses interrupt driven terminal IO and possibly other interrupt sources. This makes it
possible to include the sleep call into the pause deferred word.

: mypause 0 sleep ; ' mypause is pause

The exact meaning of the parameter (0) should be checked with the data sheet. Also make sure, that the interrupts
are working properly. Otherwise the controller will sleep until the reset button is pressed..

NRWW Flash

Atmegas have a seperate flash region called NRWW. This area is rather small (2 to 8 KB depending on the con-
troller type) and has some special features. It is primarily intended for boot loaders which can reprogram the RWW
flash without a special programmer. Amforth uses this feature to do the dictionary management. Furthermore the
NRWW section cannot self reprogram itself. Since this space is not available for user code amforth places as
much as possible of its predefined words there.

If an application needs code space in the NRWW section for some tasks, amforth has to leave room for it. This can
be done by setting the Assembler variable AMFORTH_RO_SEG to a value higher than NRWW_START_ADDR
(the default). This leaves the flash between NRWW_START_ADDR and AMFORTH_RO_SEG free for other
uses. The build process restructures the word placement accordingly.

Internally the files dict/nrww.inc and dict/rww.inc use predefined dictionary file sets to include the
essential words in a way to maximize the NRWW utilization.

Reason For Reset

If the controller constantly resets and prints only (part of) the version string, it could be really nice to know
why it behaves that way. The controller itself stores the reset reason in the machine control register, which gets
unfortunately overwritten real soon. amforth reads its content upon startup into an unused register for later usage
however.

Adding the following few lines to the applturnkey.asm file prints the numeric information at every reset

; print the numeric reason for reset
; forth code: 10 c@ . cr
.dw XT_DOLITERAL
.dw 10
.dw XT_CFETCH
.dw XT_DOT
.dw XT_CR

The following screen shows the program output after power on reset (4), pressing the reset button (2) and an
ordinary call to cold:

-- power on --
> 4
amforth 4.7 ATmega328P 16000 kHz
-- pressing reset button --
> 2
amforth 4.7 ATmega328P 16000 kHz
> cold
0
amforth 4.7 ATmega328P 16000 kHz
>

The exact meaning of the numbers is available by reading the respective controller data sheet (8 usually means
watch dog reset).

142 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

Serial Peripheral Interface SPI

The Serial Peripheral Interface is used for high-speed data exchange between the controller and some peripheral
devices. There are several modes available.

It consists of three signal lines plus one per peripheral device (called slave). All peripheral devices share the signal
lines and use the selecting line exclusivly. For any given data transfer only one of the selecting lines must be at
LOW level, all others must be HIGH.

The basic data transfer operation is a data exchange of 8 bits. The sender transmits 8 bits and recieves 8 other bits
in return from the communication partner.

The basic forth word is c!@spi which translates to character store/fetch via SPI. It uses the hardware SPI module
of the controller and thus the pre-defined pins of it.

Basic Workflow

The built-in SPI module uses a few pins to establish the communication with any device. To distinguish between
different SPI attached devices a separate signalling line is used: slave select. Every slave device is connected with
one such line. The SPI communication takes place with the one which signalling line is LOW. All other lines have
to be HIGH.

The setup of the slave select lines includes two steps: configuring as output and give it HIGH level when idle.
Note that a pin that is configured as output will immediatly go to LOW level. This may disturb a SPI slave so after
configuring the line direction the port has to go to HIGH exllicitly. When all slave select lines are configured, the
remaining SPI setup can take place

\ requires bitnames, quotations and spi loaded
> PORTB 0 portpin: dev.ss \ define hardware
> dev.ss to spi.ss \ assign ss pin to lib
> spi.ss is_output \ short LOW pulse
> spi.ss high \ de-select slave
> +spi \ turn on SPI module

Data Exchange

Any SPI transfer starts with pulling the slave select line LOW. Now any number of read/write operations may
take place. To stop an exchange, the slace select line goes back to HIGH. This signals the slave device that the
communication has ended and it usually goes back to a state that awaits a new commication.

The basic c!@spi is the building block for the next words

\ single byte transfers
: c@spi (-- c) 0 c!@spi ;
: c!cpi (c --) c!@spi drop ;

\ read len bytes from SPI and store
\ them starting at addr
: n@spi (addr len --)

0 ?do
c@spi over c! 1+

loop drop ;
\ write len bytes from addr to SPI
: n!spi (addr len ---)

0 ?do
dup c@ c!spi 1+

loop
drop ;

The file core/words/n-spi.asm contains speed optimized implementations of the n@spi and n!spi
words.

5.4. Hardware Modules (AVR) 143

AmForth Documentation, Release 6.5

SD-Cards/MMC

MMC and SD-Cards have an SPI mode which is slower than the usual mode used on PC’s but is simpler to
program.

\ standard stuff, only if not already uploaded
#require postpone.frt
#require marker.frt
#require bitnames.frt

\ board definitions
#include netio.frt

\ SPI library
#require quotations.frt
#require 2rvalue.frt
#include spi.frt

\ SD Card specific
#include mmc.frt

The include order of the file is important. The board specfic definitions need to define the words +spi, -spi for
global SPI port setup. In addition the commands +mmc and -mmc are used to perform a single communication
with the device. The portpin definitions are not used elsewhere but should match the hardware.

PORTB 0 portpin: sdcard
sdcard to spi.ss

: +mmc
sdcard low

;
: -mmc

sdcard high
;

After successfully loading these files, the command mmc_init initializes the communication and enables the
remaining access. It has to be issued every time the card has changed.

(ATmega640)> mmc_init
ok

(ATmega640)> mmc_CID . cr 10 0 mmc.
0
1 50 41 53 30 32 47 46 12 39 B6 28 D6 0 B4 99 ok

(ATmega640)>

Telnet

Hardware

Telnet is a TCP/IP protocol. It requires a connection to a network (RJ45, twisted pair Ethernet is commonly used).
A microcontroller like the Atmega needs a separate module to deal with all the low level stuff. For this recipe an
ENC28J60 is used. It is connected via SPI to the Atmega. In addition, the interrupt line of the enc28j60 (pin4) has
to be connected to INT2 (pin3 on an Atmega644).

The software needs slightly more that 1KB RAM for itself (mostly buffers), so only the bigger types satisfy this
requirement.

Software

The software is currently only available in the Community Repository

144 Chapter 5. Cookbook

http://sourceforge.net/p/amforth/community/HEAD/tree/tcp-ip/

AmForth Documentation, Release 6.5

Every network needs some settings. As of now, they are hard coded into the code, so you need to change the
source code for the MAC address and the IP address in the anc28j60.frt :

\ *** own MAC address ***
$00 constant Mymac1
$22 constant Mymac2
$F9 constant Mymac3
$01 constant Mymac4
$36 constant Mymac5
$B6 constant Mymac6
\ *** own IP address ***
&192 constant Myip1
&168 constant Myip2
&002 constant Myip3
&079 constant Myip4

The code assumes a /24 network for the other network settings.

Using

After uploading the code base (4th_mod1.frt includes most of the dependencies) the serial port is still the
command prompt. With the command +telnet the network is started and the TCP Port 23 is opened. In this
stage, a network ping should work

serial terminal:
|> +telnet
| ok
|> Send Ping Reply !
|Send Ping Reply !
|Send Ping Reply !
|Send Ping Reply !

remote shell:
|$ ping 192.168.2.79
|PING 192.168.2.79 (192.168.2.79) 56(84) bytes of data.
|64 bytes from 192.168.2.79: icmp_seq=1 ttl=64 time=1037 ms
|64 bytes from 192.168.2.79: icmp_seq=2 ttl=64 time=75.1 ms
|64 bytes from 192.168.2.79: icmp_seq=3 ttl=64 time=19.0 ms
|64 bytes from 192.168.2.79: icmp_seq=4 ttl=64 time=19.0 ms
|64 bytes from 192.168.2.79: icmp_seq=5 ttl=64 time=19.0 ms

To get a telnet session, the amforth command interpreter has to switch its IO

serial terminal:
|> +telnet
| ok
|> +tnredir

remote shell:
$ telnet 192.168.2.79
|Trying 192.168.2.79...
|Connected to 192.168.2.79.
|Escape character is '^]'.
|Start Telnet Server:
| ok
|> 1 2 + .
|1 2 + .
|3 ok
|>
| ok
|> : hi ." Howdy, mate!" cr ;
|: hi ." Howdy, mate!" cr ;

5.4. Hardware Modules (AVR) 145

AmForth Documentation, Release 6.5

| ok
|>
| ok
|> hi
|hi
|Howdy, mate!
| ok
|>
| ok
|> -tnredir
|-tnredir

serial terminal:
|Stop Telnet Server ! ok
|> hi
|Howdy, mate!
| ok
|>

Timer

The timer library in the lib/hardware directory consists basically of two parts: an access module and a generic
module that depends on one of the access modules.

The access module (in timer0.frt and timer1.frt) encapsulate the access to the selected timer. It uses
interrupts to create a millisecond counter for common usage. This millsecond counter is a single cell variable
timer0.tick that increments freely and wraps around every 65,5 seconds.

The counter is started with the command timer0.start. It automatically adapts to the actual controller clock
rate.

The generic routines rely on this counter. A timer is simply a single cell number that is either the starting value of
the millisecond counter (e.g. for elapsed) or the stop value (after).

To get a timer get the current value of the tick. With that number you can call elapsed to get the number of
milliseconds since start. To check whether a timer is expired you need to calculate the end time by adding the time
span to the current tick value. The word expired? compares the current tick value with that calculated time and
leaves a flag.

The words are multitasker friendly (by calling pause whenever useful. The words provided so far are

• expired? (t – flag) checks whether a timers has expired. calls pause internally.

• elapsed (t – n) gets the number of milliseconds since the timer has started.

• ms (u –) alternative implementation of standard word ms

• after (XT u –) waits u milliseconds and executes XT afterwards.

• every (XT n –) executes XT every n milliseconds. The XT has the stack effect (– f) for f beeing a
flag indicating whether or not terminating the every loop.

An usage example is the Loop With Timeout. It is used as an replacement for begin, and takes an number as the
amount of milliseconds the loop has to finish, otherwise an exception is thrown.

Two Wire Interface TWI/I2C

The Two Wire Interface TWI connects peripheral devices with the controller. It is compatible with the I2C bus so
any I2C device can be connected to the TWI. The bus has 2 signal lines (plus ground and V+). Every device has its
own unique address. Multiple devices can be connected as long as they use different addresses. Most I2C devices
use jumpers to select from a (usually short) list of possible devices, limiting the number of identical devices.

146 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

SCL Clock Calculator

Most client devices want a clock speed of 100 kHz or 400 kHz. The bitrate register should be well above 10 if the
controller is the bus master. The calculation formula is

𝑡𝑤𝑖𝑐𝑙𝑜𝑐𝑘 =
𝑐𝑝𝑢𝑐𝑙𝑜𝑐𝑘

16 + 2 * 𝑏𝑖𝑡𝑟𝑎𝑡𝑒𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 * 4𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

The next table shows the resulting twi clocks for a 8MHz device clock

prescaler bitrate register (may be any value between 0 and 255)
4 8 16 32 64 128 255

0 333.333 250.000 166.667 100.000 55.556 29.412 15.209
1 166.667 100.000 55.556 29.412 15.152 7.692 3.891
2 55.556 29.412 15.152 7.692 3.876 1.946 978
3 15.152 7.692 3.876 1.946 975 488 245

Basic words

The foundation of the TWI/I2C library is the file i2c.frt. It wraps the low level access to the TWI module
registers and defines the basic commands. It depends on the bitnames library.

The library uses the 7bit addresses. The 8th bit to distinguish between read and write access is added internally
with the words i2c.wr and i2c.rd.

I2C Data Exchange

The I2C Data Exchange is initiated with i2c.begin. This word takes a 7bit I2C hardware address as parameter
and aquires the bus. It sends the I2C START condition too.

Next the data read/write actions take place. All communication is directed to the selected device only. Do not
send a STOP condition.

The final action is the i2c.end which releases the bus and sends the I2C STOP condition. Thereafter the next
bus cycle can start.

See also:

I2C Generic, I2C Bus Scanner, I2C EEPROM VALUE, I2C EEPROM and I2C EEPROM Blocks

Usart Settings

There is some confusion concerning how usart settings should be made.

During assembly, the typical error message looks like

atmega16.asm(26): warning: Use of undefined or forward referenced symbol 'TXEN0' in .equ/.set

The symbol naming is based upon Atmel’s naming conventions. If the controller has only one usart module, it is
named either usart or usart0. Newer Atmegas use the 0 regardless of the real number of usart modules, older
ones omit the 0 completely. You definitely have to check the datasheet.

The following controllers use the old schema, they need the usart file:

8515def.inc:.equ RXEN = 4 ; Receiver Enable
8535def.inc:.equ RXEN = 4 ; Receiver Enable
m103def.inc:.equ RXEN = 4 ; Receiver Enable
m163def.inc:.equ RXEN = 4 ; Receiver Enable
m16Adef.inc:.equ RXEN = 4 ; Receiver Enable
m16def.inc:.equ RXEN = 4 ; Receiver Enable
m323def.inc:.equ RXEN = 4 ; Receiver Enable
m32Adef.inc:.equ RXEN = 4 ; Receiver Enable

5.4. Hardware Modules (AVR) 147

AmForth Documentation, Release 6.5

m32def.inc:.equ RXEN = 4 ; Receiver Enable
m8515def.inc:.equ RXEN = 4 ; Receiver Enable
m8535def.inc:.equ RXEN = 4 ; Receiver Enable
m8Adef.inc:.equ RXEN = 4 ; Receiver Enable
m8def.inc:.equ RXEN = 4 ; Receiver Enable
pwm216def.inc:.equ RXEN = 4 ; Receiver Enable
pwm2Bdef.inc:.equ RXEN = 4 ; Receiver Enable
pwm2def.inc:.equ RXEN = 4 ; Receiver Enable
pwm316def.inc:.equ RXEN = 4 ; Receiver Enable
pwm3Bdef.inc:.equ RXEN = 4 ; Receiver Enable
pwm3def.inc:.equ RXEN = 4 ; Receiver Enable

All others use a number.

A simple approach that works in most cases is as follows: delete/change all occurrences of the 0 character in the
following excerpt from your version of the template.asm file.

.include "drivers/usart_0.asm"

Please note, that the file is named drivers/usart.asm not drivers/usart_.asm.

Similar changes are needed for the other usart modules (e.g. usart3).

Watchdog

The watchdog is a build-in module present in all atmega controllers. It triggers a reset if for a predefined period
of time nothing is done to prevent it.

The controller has a special machine instruction for the watchdog reset called wdr. Amforth has a wrapper forth
word with the same name after including the file core/words/wdr.asm.

This word needs to be called often enough to keep the watchdog from resetting the controller. For a system that
basically waits at the command prompt the pause command could be sufficient:

> ' wdr is pause

Another potential place for adding a wdr is the inner interpreter by either changing
amforth-interpreter.asm or the core/words/exit.asm. Adding the (machine) wdr instruc-
tion there makes sure that the watchdog is reset as long as the inner interpreter works.

Initialization

Early atmega variants need to initialize the watchdog every time after a reset, newer ones keep it active even over
resets. This may cause troubles since the WDR needs to be called much earlier for these controllers. One solution
is to place the WDR activation at the beginning of the turnkey actions.

Acknowledgements

This recipe is based upon work by David Wallis.

Hardware Modules (MSP430)

Interrupts on the MSP430

Currently (version 6.5 and up) only the MSP430 G2553 has some preliminary support for interrupt service routines
written in high level Forth. Most of the words from the AVR world work exactly the same way:

See also:

148 Chapter 5. Cookbook

AmForth Documentation, Release 6.5

Interrupt Service Routines, Interrupt Critical Section

The ISR support is disabled by default. To enable it, edit the application master file and add the following line to
it

.set WANT_INTERRUPTS = 1

Now rebuild and reflash the controller. Be aware of the additional code space requirements and a slightly slower
overall system speed.

Currently only the G2553 supports this system. Unlike the AVR world, not every index of the ISR table is used
actually, so a mapping is used to minimize the code space usage.

Index Mapping G2553
1 Port 1 IO
2 Port 2 IO
3 ADC IO
4 UCSI Transmit
5 UCSI Receive
6 Timer A CC1
7 Timer A CC0
8 Comparator A
9 Timer B CC1
10 Timer B CC0

The XT table is stored in the Info Flash. To keep it permanently, use the SAVE command. All ISR have the default
action noop and do nothing at all.

See also:

Interrupt Service Routines AVR8

5.5. Hardware Modules (MSP430) 149

AmForth Documentation, Release 6.5

150 Chapter 5. Cookbook

CHAPTER

SIX

RECOGNIZERS

The goal of a recognizer is to dynamically extent the Forth command interpreter and make it understand and handle
new data formats as well as new synatax’s. The present, 2nd generation recognizers achieve this by generalizing
the classic interpreter with an API to factor the components. Recognizers are portable across different forth’s.

Recognizers are not a new concept for forth. They have been discussed earlier.

• compgroups.net/comp.lang.forth/additional-recognizers/734676 in 2003.

• Number Parsing Hooks in 2007.

• Presentations held at Euroforth conferences

– 2012 (B. Paysan)

– 2015 (A. Ertl)

– 2016 (A.Ertl with Video)

More recognizer examples are available at The Forth Net.

Version 4

Version 4 (pdf), (txt)

Forth source code and test code require Stack.frt and tester.fs.

Most changes are only wording changes. Most importandly many of the key words are renamed to better ones.
They now describe what they do in a less confusing way (I hope). No changes were made to the stack effect so all
existing code continues to work with a simple search and replace.

v3 v4
recognizer rec-stack
recognizer: dt-token:
do-recognizer recognize
r>* dt>*
r:fail dt:null

non-normative wording changes

v3 v4
rec:word rec:find
r:word dt:xt
r:num dt:num
r:dnum dt:dnum
r:float dt:float
r:name dt:nt

The data type token DT is not new actually. It got only a more prominent role since it is one result of the parsing
process but is not related to recognizers themselves. It provides information about the data type and how to handle
a certain data type (hence the name) inside the interpreter. It is not relevant where it comes from.

151

http://compgroups.net/comp.lang.forth/additional-recognizers/734676
https://groups.google.com/d/msg/comp.lang.forth/r7Vp3w1xNus/Wre1BaKeCvcJ
http://www.complang.tuwien.ac.at/anton/euroforth/ef12/papers/paysan-recognizers-ho.pdf
http://www.complang.tuwien.ac.at/anton/euroforth/ef15/papers/ertl-recognizers-slides.pdf
http://www.complang.tuwien.ac.at/anton/euroforth/ef16/papers/
http://theforth.net

AmForth Documentation, Release 6.5

The gforth team suggests that the DT>x words should have a different stack effect. DT>COMP (i*x
DT:TOKEN -- j*y XT)

The input is what comes from the recognizer parsing words, the result should be feedable directly to EXECUTE to
achieve the desired semantics. The words may change the result set too. In the reference implementation this is
not used however.

The primary purpose of this seems to be an optimization and an unification of the name token and the data type
token for named words), so that DT>COMP becomes identical to NAME>COMPILE for name tokens.

Outdated

The 1st formal RFD (pdf), (txt) was published at october, 3 2014. Version 2 (pdf), (txt) has been published on
september, 20 2015. It improves the proposed standard section and adds a long chapter discussing the recog-
nizer design based on feedback from version 1. The 3rd version has been started immediately after v2 due to a
suggestion changing the POSTPONE action. Version 3 (pdf), (txt).

The Sourcecode requires Stack.frt. In the Recognizer-Test are many tests and example implementation for gforth,
MPE’s vfxlin and Swift-Forth from Forth Inc.

The papers linked below give some historical background information.

• First Generation is an all in one implementation.

• Second Generation describes the factored component approach.

Namespace RFD

An inofficial Namespace RFD.

152 Chapter 6. Recognizers

CHAPTER

SEVEN

REFERENCE CARD

General

AmForth is a 16bit ITC forth. It is almost compatible with the forth standards from 1994 and 200x. It runs on the
bare metal controller with no further dependencies. The interpreter operates on whitespace delimited words. The
compiler is a single pass compiler that writes directly to the flash based dictionary.

There are three distinct address spaces for flash, eeprom and RAM. Flash is addressed word wise (16 bits per
address unit), RAM and EEPROM is accessed byte wise (8bits per address unit). The standard return stack has 40
cells, the data stack is limited by the available RAM size.

Numbers can be prefixed by $ to indicate hexadecimal, % for binary and # for decimal numbers. A trailing dot is
used for double cell numbers.

Words not found here are not part of the compileable core system. Their forth sources are in the /lib directory,
usually named after the word name: e.g. 2dup is defined in a file named 2dup.frt.

Arithmetics (AVR8)

• 1- (n1 – n2) optimized decrement

• 1+ (n1|u1 – n2|u2) optimized increment

• 2/ (n1 – n2) arithmetic shift right

• 2* (n1 – n2) arithmetic shift left, filling with zero

• abs (n1 – u1) get the absolute value

• >< (n1 – n2) exchange the bytes of the TOS

• cell+ (a-addr1 – a-addr2) add the size of an address-unit to a-addr1

• d2/ (d1 – d2) shift a double cell value right

• d2* (d1 – d2) shift a double cell left

• dabs (d – ud) double cell absolute value

• dinvert (d1 – d2) invert all bits in the double cell value

• d- (d1 d2 – d3) subtract d2 from d1

• dnegate (d1 – d2) double cell negation

• d+ (d1 d2 – d3) add 2 double cell values

• invert (n1 – n2) 1-complement of TOS

• log2 (n1 – n2) logarithm to base 2 or highest set bitnumber

• lshift (n1 n2 – n3) logically shift n1 left n2 times

• - (n1|u1 n2|u2 – n3|u3) subtract n2 from n1

153

AmForth Documentation, Release 6.5

• m+ (d1 n1 – d2) add a number to a double cell

• m* (n1 n2 – d) multiply 2 cells to a double cell

• + (n1 n2 – n3) add n1 and n2

• +! (n a-addr –) add n to content of RAM address a-addr

• popcnt (n1 – n2) count the Number of 1 bits (population count)

• rshift (n1 n2 – n3) shift n1 n2-times logically right

• /mod (n1 n2 – rem quot) signed division n1/n2 with remainder and quotient

• true (– -1) leaves the value -1 (true) on TOS

• um/mod (ud u2 – rem quot) unsigned division ud / u2 with remainder

• um* (u1 u2 – d) multiply 2 unsigned cells to a double cell

• u/mod (u1 u2 – rem quot) unsigned division with remainder

• 0 (– 0) place a value 0 on TOS

Compare (AVR8)

• d= (n1 n2 – flag) compares two double cell values

• d0> (d – flag) compares if a double double cell number is greater 0

• d0< (d – flag) compares if a double double cell number is less than 0

• = (n1 n2 – flag) compares two values for equality

• > (n1 n2 – flag) flag is true if n1 is greater than n2

• 0> (n1 – flag) true if n1 is greater than 0

• 0<> (n – flag) true if n is not zero

• u< (u1 u2 – flasg) true if u1 < u2 (unsigned)

• 0= (n – flag) compare with 0 (zero)

• 0< (n1 – flag) compare with zero

Compiler (AVR8)

• code (–) (C: cchar –) create named entry in the dictionary, XT is the data field

• :noname (– xt) create an unnamed entry in the dictionary, XT is DO_COLON

• does> (i*x – j*y) (R: nest-sys1 –) (C: colon-sys1 – colon-sys2) organize the XT replacement to call
other colon code

• end-code (–) finish a code definition

• exit (–) (R: nest-sys –) end of current colon word

• header (addr len wid – nfa) creates the vocabulary header without XT and data field (PF) in the wordlist
wid

• i (– n) (R: loop-sys – loop-sys) current loop counter

• i-cell+ (addr – addr’) skip to the next cell in flash

• immediate (–) set immediate flag for the most recent word definition

• j (– n) (R: loop-sys1 loop-sys2 – loop-sys1 loop-sys2) loop counter of outer loop

154 Chapter 7. Reference Card

AmForth Documentation, Release 6.5

• s, (addr len –) compiles a string from RAM to Flash

• unloop (–) (R: loop-sys –) remove loop-sys, exit the loop and continue execution after it

• user (n cchar –) create a dictionary entry for a user variable at offset n

• wlscope (addr len – addr’ len’ wid) dynamically place a word in a wordlist. The word name may be
changed.

Dictionary (AVR8)

• :command:‘‘ (n –) compile 16 bit into flash at DP

Environment (AVR8)

• /pad (– padsize) Size of the PAD buffer in bytes

• wordlists (– n) maximum number of wordlists in the dictionary search order

• mcu-info (– faddr len) flash address of some CPU specific parameters

Extended VM (AVR8)

• a@ (– n2) Read memory pointed to by register A (Extended VM)

• a@- (– n) Read memory pointed to by register A, decrement A by 1 cell (Extended VM)

• a@+ (– n) Read memory pointed to by register A, increment A by 1 cell (Extended VM)

• a! (n –) Write memory pointed to by register A (Extended VM)

• a!- (– n2) Write memory pointed to by register A, decrement A by 1 cell (Extended VM)

• a!+ (– n2) Write memory pointed to by register A, increment A by 1 cell (Extended VM)

• a> (n1 – n2) read the A register (Extended VM)

• b@ (– n2) Read memory pointed to by register B (Extended VM)

• b@- (– n) Read memory pointed to by register B, decrement B by 1 cell (Extended VM)

• b@+ (– n) Read memory pointed to by register B, increment B by 1 cell (Extended VM)

• b! (n –) Write memory pointed to by register B (Extended VM)

• b!- (– n2) Write memory pointed to by register B, decrement B by 1 cell (Extended VM)

• b!+ (– n2) Write memory pointed to by register B, increment B by 1 cell (Extended VM)

• b> (n1 – n2) read the B register (Extended VM)

• na@ (n1 – n2) Read memory pointed to by register A plus offset (Extended VM)

• na! (n offs –) Write memory pointed to by register A plus offset (Extended VM)

• nb@ (n1 – n2) Read memory pointed to by register B plus offset (Extended VM)

• nb! (n offs –) Write memory pointed to by register B plus offset (Extended VM)

• >a (n –) Write to A register (Extended VM)

• >b (n –) Write to B register (Extended VM)

7.5. Dictionary (AVR8) 155

AmForth Documentation, Release 6.5

Interrupt (AVR8)

• int@ (i – xt) fetches XT from interrupt vector i

• -int (–) turns off all interrupts

• +int (–) turns on all interrupts

• int! (xt i –) stores XT as interrupt vector i

• int-trap (i –) trigger an interrupt

• #int (– n) number of interrupt vectors (0 based)

Logic (AVR8)

• and (n1 n2 – n3) bitwise and

• negate (n1 – n2) 2-complement

• not (flag – flag’) identical to 0=

• or (n1 n2 – n3) logical or

• xor (n1 n2 – n3) exclusive or

MCU (AVR8)

• !@spi (n1 – n2) SPI exchange of 2 bytes, high byte first

• bm-clear (bitmask byte-addr –) clear bits set in bitmask on byte at addr

• bm-set (bitmask byte-addr –) set bits from bitmask on byte at addr

• bm-toggle (bitmask byte-addr –) toggle bits set in bitmask on byte at addr

• n@spi (addr len –) read len bytes from SPI to addr

• n!spi (addr len –) write len bytes to SPI from addr

• rx?-poll (– f) check if a character can be appended to output queue using register poll

• rx-poll (c –) wait for one character and read it from the terminal connection using register poll

• c!@spi (txbyte – rxbyte) SPI exchange of 1 byte

• tx?-poll (– f) check if a character can be send using register poll

• tx-poll (c –) check availability and send one character to the terminal using register poll

• ubrr (– v) returns usart UBRR settings

• +usart (–) initialize usart

• wdr (–) calls the MCU watch dog reset instruction

Memory (AVR8)

• c@ (a-addr - c1) fetch a single byte from memory mapped locations

• cmove (addr-from addr-to n –) copy data in RAM, from lower to higher addresses

• cmove> (addr-from addr-to n –) copy data in RAM from higher to lower addresses.

• c! (c a-addr –) store a single byte to RAM address

156 Chapter 7. Reference Card

AmForth Documentation, Release 6.5

• (!i-nrww) (n f-addr –) writes n to flash memory using assembly code (code to be placed in boot loader
section)

• @ (a-addr – n) read 1 cell from RAM address

• @e (e-addr - n) read 1 cell from eeprom

• @i (f-addr – n1) read 1 cell from flash

• @u (offset – n) read 1 cell from USER area

• fill (a-addr u c –) fill u bytes memory beginning at a-addr with character c

• ! (n addr –) write n to RAM memory at addr, low byte first

• !e (n e-addr –) write n (2bytes) to eeprom address

• !u (n offset –) write n to USER area at offset

Multitasking (AVR8)

• cas (new old addr – f) Atomic Compare and Swap: store new at addr and set f to true if contents of addr
is equal to old.

• pause (–) Fetch pause vector and execute it. may make a context/task switch

Numeric IO (AVR8)

• hld (– addr) pointer to current write position in the Pictured Numeric Output buffer

Search Order (AVR8)

• forth-wordlist (– wid) get the system default word list

• get-current (– wid) get the wid of the current compilation word list

• set-current (wid –) set current word list to the given word list wid

• wordlist (– wid) create a new, empty wordlist

Stack (AVR8)

• 2r@ (– d) (R: d – d) fetch content of TOR

• 2r> (– x1 x2) (R: x1 x2 –) move DTOR to TOS

• 2>r (x1 x2 –) (R: – x1 x2) move DTOS to TOR

• drop (n –) drop TOS

• dup (n – n n) duplicate TOS

• lp0 (– addr) start address of leave stack

• nip (n1 n2 – n2) Remove Second of Stack

• nr> (– x-n .. x-1 n) (R: x-n .. x-1 n –) move n items from return stack to data stack

• n>r (x-n .. x-1 n –) (R: – x-n .. x-1 n) move n items from data stack to return stack

• over (x1 x2 – x1 x2 x1) Place a copy of x1 on top of the stack

7.12. Multitasking (AVR8) 157

AmForth Documentation, Release 6.5

• ?dup (n1 – [n1 n1] | 0) duplicate TOS if non-zero

• rot (n1 n2 n3 – n2 n3 n1) rotate the three top level cells

• rp@ (– n) current return stack pointer address

• rp! (addr –) (R: – x*y) set return stack pointer

• r@ (– n) (R: n – n) fetch content of TOR

• r> (– n) (R: n –) move TOR to TOS

• sp@ (– addr) current data stack pointer

• sp! (addr – i*x) set data stack pointer to addr

• swap (n1 n2 – n2 n1) swaps the two top level stack cells

• >r (n –) (R: – n) move TOS to TOR

String (AVR8)

• compare (r-addr r-len f-addr f-len – f) compares two strings in RAM

System (AVR8)

• allot (n –) allocate or release memory in RAM

• cold (i*x –) (R: j*y –) start up amforth.

• (defer) (i*x – j*x) runtime of defer

• (value) (– n) runtime of value

• Edefer@ (xt1 – xt2) does the real defer@ for eeprom defers

• Edefer! (xt1 xt2 –) does the real defer! for eeprom defers

• execute (xt –) execute XT

• nfa>lfa (nfa – lfa) get the link field address from the name field address

System Value (AVR8)

• dp (– f-addr) address of the next free dictionary cell

• ehere (– e-addr) address of the next free address in eeprom

• environment (– wid) word list identifier of the environmental search list

• forth-recognizer (– addr) address of the next free data space (RAM) cell

• here (– addr) address of the next free data space (RAM) cell

• (marker) (– e-addr) The eeprom address until which MARKER saves and restores the eeprom data.

• !i (n addr –) Deferred action to write a single 16bit cell to flash

• turnkey (– n*y) Deferred action during startup/reset

158 Chapter 7. Reference Card

AmForth Documentation, Release 6.5

System Variable (AVR8)

• latest (– addr) system state

• lp (– addr) leave stack pointer

• newest (– addr) system state

• state (– addr) system state

• up@ (– addr) get user area pointer

• up! (addr –) set user area pointer

Time (AVR8)

• 1ms (–) busy waits (almost) exactly 1 millisecond

Tools (AVR8)

• cfolddepth (flagset – n) constant fold depth

• ee>ram (e-addr r-addr len –) copy len cells from eeprom to ram

• icompare (r-addr r-len f-addr f-len – f) compares string in RAM with string in flash. f is zero if equal
like COMPARE

• icount (addr – addr+1 n) get count information out of a counted string in flash

• immediate? (flagset – +/-1) return +1 if immediate, -1 otherwise, flag from name>flags

• init-ram (–) setup the default user area from eeprom

• itype (addr n –) reads string from flash and prints it

• name>flags (nt – f) get the flags from a name token

• nfa>cfa (nt – xt) get the XT from a name token

• unused (– n) Amount of available RAM (incl. PAD)

7.19. System Variable (AVR8) 159

AmForth Documentation, Release 6.5

160 Chapter 7. Reference Card

CHAPTER

EIGHT

HISTORY

9.7.2015: release 5.9

• lib: for and next. The i and j can be used as well.

• core(AVR8): clear all RAM at cold.

• core(MSP430): DEFER and VALUE were missing in release 5.8. pause and turnkey using them (RAM
based, save-able to info flash).

• core(All): ’ uses the recognizer stack.

• core(ALL): Fix regression in literal (broke e.g. quotations)

25.3.2015: release 5.8

• core(MSP430): new :noname and the defer and value groups of commands.

• core(All): words with the same name do the same (mostly).

• core(AVR8): introduce <builds. Together with does> saves one flash erase cycle and makes the source
work on the MSP430 as well.

1.2.2015: release 5.7

• core(ALL): name>interpret and name>compile added. New Recognizer rec:name able to re-
place rec:word. Uses name tokens (Forth 2012) instead of execution tokens.

• core(ALL): Lots of bugfixes and regressions. The AVR port should be fully usable again.

• core(MSP430): restructure of the init process: cold now transfers the data from INFO flash back to RAM
if BASE is set and SAVE was executed. That way the user code now correctly survives a restart. SAVE is
much like marker that overwrites the previous state and gets no name.

22.12.2014: release 5.6

• core(AVR): icompare got the same return flag semantics as compare. The leave and ?do forward
branches are now resolved at compile time, saves one cell per loop on the return stack at runtime.

• core(AVR): interrupt vectors are moved from RAM to EEPROM. Saves RAM space and simplifies turnkey
actions (remove any int! from your turnkey!)

• core: re-arranged source files: controller specific and common code.

• New architecture: MSP430 (G2553) as used in the Texas Instruments LaunchPad 430 with code from
Camelforth and 4C4th.

161

http://www.camelforth.com
http://www.somersetweb.com/4E4th/EN.html

AmForth Documentation, Release 6.5

• core: generalized existing Configuration Stacks in EEPROM into map-stack, get-stack and
set-stack. Used for the search order and recognizer stacks.

• all: changed license to GPLv3.

6.10.2014: release 5.5

• core: Bugfix in warm to initialize the interpreter for turnkey. Thanks to David.

• core: bugfixes for handling some negative numbers in +loop and */.

• core: simplified assembly primitves for counted loops. They are now faster except for i. The return stack
gets different numbers now.

• core: rewrite of accept. The user visible change is that the final CR/LF is no longer sent here. The forth
text interpreter does it elsewhere thus the user interface is unchanged.

• core: Fixed a regression introduced after 5.1: a<b is not always the same as a-b<0.

16.8.2014: release 5.4

• lib: Almost complete Blocks wordset support. Only a few dark corners behave differently.

• lib: renamed TWI to I2C, added many tools for it I2C EEPROM VALUE, I2C EEPROM Blocks and a few
more.

• recipes: Test Driven Development with Amforth, Conditional Interpret

• lib: Fully support the ANS94 String wordset.

• core: Double cell return stack access words (2>r and 2r>) missed the internal swap’s. Added new 2r@.

• lib: Limited LOCALs

7.5.2013: release 5.3

• core: 2nd generation of Recognizer and their use for native String literals.

• core: renamed edp to ehere. here points to data space, ehere points to eeprom data space.

• core: merged code for defer’s and value’s. Speed improvements for defer actions.

• community: MMC/SD-Card from Lubos (So Sorry for beeing late) and TCP/IP (Telnet). Many Thanks to
Jens. Speed optimized words for SPI in amforth core.

• doc: Japanese Getting Started

• doc: new recipes: Forward Declarations, Extended VM, Quotations, Exceptions, Coroutines, updated
recipes: Serial Peripheral Interface SPI, Arduino Hello World

23.12.2013: release 5.2

• Improved and extended Values

• Forth 2012 Traverse-Wordlist

• improved documentation

• core: added d0= and 0= as assembly primitives and use them in other compare operations. Saves a lot of
code space.

162 Chapter 8. History

http://en.wikipedia.org/wiki/Test-driven_development
http://amforth-installation-ja.readthedocs.org/ja/latest/index.html
http://www.forth200x.org/traverse-wordlist.html

AmForth Documentation, Release 6.5

• Wordlist entries are now 8bit clean. Words with umlauts or e.g. Greek commands work as expected, unless
the terminal does not cooperate. Thanks to Enoch.

> : Σ 0 swap 0 do + loop ;
ok

> 7 8 9 3 Σ .
24 ok

>

5.4.2013: release 5.1

• core: Automatic scoping of words. A system hook can be used to use a different wordlist than CURRENT
to place a new word in. Thanks to Enoch for the idea and the code.

• lib: very flexible CRC8 checksum generator and checker. Thanks to Enoch.

• recipes: Interrupt Critical Section, Unbreakable AmForth, Efficient Bit Manipulation, Dump Utilities, Ctrl-
C Thanks to Enoch and the others on the mailling list for code and inspiration.

• core: -int does no longer leave the SREG register. It only turns off the global interrupt flag. Thanks to
Enoch.

• lib: major 1-wire enhancements: CRC checks and a better naming convention for all words. Thanks to
Erich for help and substantial contributions.

• appl: added the Arduino Leonardo. avrdude needs a small patch to write properly the eeprom on the
Atmega32U4.

• core: New popcnt (n – m) counts the Hamming Weight of the given number.

• core: renamed baud to ubrr.

• core: nfa>lfa is a factor in a number of words. It generates the link field address from a given name field
address.

• doc: Farewell docbook XML, welcome reST. All documentation will be written in reStructured Text.

• lib: Simple Quotations. Their typical use case is

: foo ... [: bar baz ;] ... ;

which is equivalent to

:noname bar baz ; Constant#temp#
: foo ... #temp# ...;

27.12.2012: release 5.0

• lib: Access to Dallas 1-Wire Devices. Based on code and ideas by Bradford J. Rodriguez for the 4C4th
project.

• lib: many Arduino ports have more than one purpose. The forth200x Synonym gives them useful alias
names.

• Arduino: Added definitions for all ports based upon Digital Ports.

• recipes: There are now more than 30 Cookbook in the cookbook: many debug tools, loop with timeout,
porting from C, and interrupts to mention some of them.

• core: autogenerate sleep depending on register availability. sleep on an Atmega32 is very different
from an Atmega328p. The parameters for calling it at the forth level are the same however. The include list
for the assembler is expanded with core/<device>/ to find the right sleep.asm file.

8.9. 5.4.2013: release 5.1 163

http://en.wikipedia.org/wiki/Hamming_weight
http://sphinx-doc.org/
http://www.4e4th.eu
http://www.4e4th.eu
http://www.forth200x.org/synonym.html

AmForth Documentation, Release 6.5

• core: rudimentary error checks in the compiler: There has to be branch destination on the stack. If there is
nothing, a stack underflow exception gets thrown.

> : ?do i . loop ;
?? -4 14
> : t2 ?do i . loop ;
ok

>

• core: Number sign may follow the number base prefix as specified in Forth200x Number Prefix. Added the
character # as prefix for decimal as well.

• core: fixed a regression in toupper caused by making within standards compliant. Thanks to Arthur
for the fix. [compile] fixed as well.

27.7.2012: release 4.9

• core: initialisation of the USER area is now done in WARM. please check your TURNKEY to remove the
call to it. Thanks to Erich for pointing to.

• core: regenerated the devices files with the part description files from studio v6. added bitnames to the forth
and python modules (later to be used with the shell).

• tools: completly new shell program with cool upload features from Keith: amforth-shell It has command
completion, full command history, automatic controller identification with all register names and much
more. Updated the Shells And Upload for this task

• lib: re-arranged source files, improved timer modules.

• lib: case did not work at all. Thanks to Jan for telling.

• core: the new variable latest has the XT of the currently being defined colon word.

• core: unused should tell the free amount of memory in the area here points to: RAM. Thanks to Carsten
for the hint.

• core: introducing an environment query for basic controller information: memory sizes, max dictionary
address: mcu-info. The structure itself is not yet finalized. See at the end of a core/<device>/device.asm
file for details.

• tools: The upload utilities were unable to process absolute filenames (those beginning with a /) Thanks to
Carsten for the fix.

26.3.2012: release 4.8

• core: fixed a bug in na@ and nb@ (extended VM registers).

• core: redesigned to for use in LOCALs and RAM-based values.

• core: .s is stripped down to a single line output of the stack content only. Looks better in the call tracer
and is more like other forth’s.

• core: small atxmega updates. Unfortunatly avrdude cannot flash the boot loader section as expected.

• core: optional Unified memory address space. @ and ! use the range from 0 to RAMEND as RAM, from
RAMEND+1 upwards the next addresses from EEPROM, until EEPROMEND is reached and the remaining
addresses from flash.

• core: environment? can now be used in colon definitions. changed into loadable forth source instead of
compile-time assembly.

• core: itype now sends proper (e.g. single byte) characters to emit.

• core: type is made more robust against emit errors.

164 Chapter 8. History

http://www.forth200x.org/number-prefixes.html
http://amforth.svn.sourceforge.net/viewvc/amforth/trunk/tools/amforth-shell.py?view=log
http://amforth.svn.sourceforge.net/viewvc/amforth/trunk/core/devices/atmega328/device.asm?view=markup

AmForth Documentation, Release 6.5

• lib: macro and a Defining and using Macros recipe for using them.

• Profiler to count the number of calls.

• lib: evaluate for both RAM and Flash based strings.

4.2.2012: release 4.7

• recipes: Multitasking, Reason For Reset and Tracer

• core: new words from the STRINGS word set: sliteral and compare. Latter is a simplified version of
the ANS94 spec: max 255 chars, (in)equality tests only.

• core: source, refill are now deferred words, based on the USER area. >in likewise. Based on ideas
from Strong Forth.

• core: /key removed, it can be implemented by changing refill.

• lib: The multitasker could not work after power cycles. Thanks to Erich for fixing.

6.10.2011: release 4.6

• core: words shows the first entry in the search order list as specified by DPANS94.

• lib: new word m*/ (d1 n1 n2 – d2), uses a triple cell intermediate for d1*n1.

• lib: new words bm-set, bm-clear and bm-toggle that efficiently change bits in RAM byte addresses.
e.g. :command:‘ %0010 here bm-toggle‘ changes bit 2 in the RAM location at here.

• lib: renamed spirw to c!@spi, new word !@spi exchanges two bytes via SPI. Follows remotly the
memory access word naming conventions.

29.6.2011: release 4.5

• arduino: re-arranged word placing to maximize usable flash (at least on a duemilanove device, the bigger
variants like the sanguino and mega* still have room for improvement). The target mega is now called
mega128.

• lib: lib/buffer.frt implements buffer:.

• doc: improved refcard. Thanks to Erich for input and patches.

• core: changed API of the Recognizer to the final addr/len pairs. Do not use counted strings any longer!

• core: new words find-name and parse-name follow Forth 200x and operate on the current input buffer,
word is no longer used internally. Lots of internal code simplifications.

• core: (create) throws exception -16 if no name is given.

• core: exception -42 is really -4 (stack underflow).

• core: digit? again. Stack effect now compatible to gforth: (char -- n true | false). Cur-
rent setting of base is now taken internally.

24.5.2011: release 4.4

• examples: added a game of life and a queens puzzle solver.

• core: restructure of the RAM usage. You need to remove the .set here = ... line from your appli-
cation definition file (template.asm).

8.13. 4.2.2012: release 4.7 165

http://home.vrweb.de/stephan.becher/forth/doc/chapter11.htm
http://www.forth200x.org/buffer.html
http://www.forth200x.org/parse-name.html

AmForth Documentation, Release 6.5

• core: turn cold into the main initialization word and warm into some high level initialization.

• doc: updated Technical Documentation of Recognizers and Interrupt Processing. Reformatted the Reference
Card to a more compact style.

• core: added n>r and nr> from Forth 200x.

• core: Redesign of Interrupt Handling. ISR Routines are still normal Colon Words and can deal with every
kind of interupts. There are no lost interupts any longer. Based on Ideas from Wojciech (Tracker ID
2781547) and Al (mailling list).

• appl: Fixed a regression in the floating point library due to changes in number in post 4.0 releases. >float
can now be used as the main part of a recognizer.

• core: added a compile time option WANT_IGNORECASE to make amforth case-insensitve, disabled by
default.

1.5.2011: release 4.3

• core: u> had wrong stack effect in case of true result.

• core: int-trap triggers an interrupt from software.

• core: /user environment query gives the size of the USER area

• core: sleep takes the sleep mode as parameter.

• ex: added timer-interrupt.frt as an example for using interrupts with forth.

• pub: Erich has presented amforth at the Fosdem 2011 Slides and Proceedings (published with permission).
Thanks Erich!

• core: simplified get/set-order with a changed eeprom content.

• doc: new user guide version from Karl (for version 4.2).

• core: renamed e@/e! to @e/!e to comply with the memory access wordset from forth200x, same with
i@/i!.

• core: documentation fixes in many files: Reference Card.

• core: re-design of the (outer) interpreter using recognizers (dynamically extend the interpeter to deal with
new semantics. Defined get/set-recognizer similiar to get/set-order.

19.9.2010: release 4.2

• core: fixed a regression for i! which made marker useless (among other oddities). Thanks to Marcin for
the fix

• core: currently defined colon words are invisible until the final ;.

• applications: Leon contributed a IEEE754 floating point library in plain forth, Pito translated some basic
words into assembly for speed.

2.9.2010: release 4.1

• core: new words 2>r, 2r> and 2literal.

• core: converted most of the atmega part definition files with the pd2amforth utility. Please report any success
/ failure.

• doc: set the fuses to make the bootloader size as large as the NRWW size.

166 Chapter 8. History

http://www.forth200x.org/n-to-r.html

AmForth Documentation, Release 6.5

• core: abort assembling if flash usage is above limits.

• core: allow double cell numbers in colon definitions. Thanks to Pito for reporting the bug.

1.7.2010: release 4.0

• tools: amforth-upload.py optionally loads a device specific module and replaces register definitions with
their values prior to sent the code to the controller. The device modules are auto-generated from the part
description files.

• core: ANS94 mention that HERE points to the data (RAM) region. Re-introduced DP as the dictionary
(Flash) pointer. HEAP is gone. Migrate old HEAP to HERE and old HERE to DP.

• core: save and clear the initial value of the MCU Status Register at address 10.

• tools: pd2amforth is now capable to generate the device definition files. It is no longer necessary to edit
them manually.

• core: finally separated the terminal IO settings from the device definition files.

• core: optionally set WANT_SPI (or any other IO Module) to include the register definion names at build
time.

• core: massivly restructured the devices/ filesystem entry. Change your application files to include
device.asm instead of the device name. Set the include directory to the proper subdirectory under
core/devices as well.

• core: dynamically calculate the free space. Do not use all of it however, the data stack may grow.

s" /pad" environment?

• core: Simplified the Pictured Numeric Output words. They now use the memory area below pad (which is
100 bytes above HEAP) as the buffer region.

• appl: added the arduino board with some example codes. Currently with the Mega (Atmega1280), Duemi-
lanove (Atmega328) and Sanguino (Atmega644p) controller types.

25.5.2010: release 3.9

• web: updated the Howto page to demonstrate Redirect IO.

• core: The Atmega2561 now fully works (incl the compiler).

• core, appl: Andy Kirby donated the device files and a full implemention for Arduino Mega with the At-
mega1280.

• core: CPU Name, Forthname and Version strings can be accessed as environment queries.

25.4.2010: release 3.8

• core: turned i! into a deferred word.

• core: fix for icompare to make it work with all addr/len strings. Bug found and fixed by Michael and
Adolf.

• core: re-implemented the i! in (mostly) assembly language to ease integration into bootloaders.

• core: factor the three prompts into compile time changable words.

• appl: the dict_minimum.inc und dict_core.inc files need to be included within the application
defition files.

8.20. 1.7.2010: release 4.0 167

AmForth Documentation, Release 6.5

• core: pad is no longer used by amforth itself.

• core: reorder internal code in interpret to get rid of 0= calls.

24.1.2010: release 3.7

• core: atxmega 128 support (no compiler yet).

• core: new word >number. number accepts trailing (!) dots to enter double cell numbers.

• lib: enhanced multitasker with turnkey support. Thanks to Erich Wälde for in depth debugging and
testing.

• lib: new word anew drops word definitions if already defined, starts a new generation.

• core: USER area is now split into system and application user areas, system user area is pre-set from
EEPROM.

• new: source repository Incubator for not-yet-ready-but-interesting projects, volunteers welcome.

1.10.2009: release 3.6

• core: new word environment. It provides the environment wordlist identifier, thus make it possible to
create own environment queries as standard words.

• core: new word d=.

• core: amforth runs partially on an atmega2561 and atxmega’s, there is still no working flash store word (i!)
therefore only the interpreter is available yet.

• core: moved the usart init values to appl section.

• core: added a poll-only receive word, selectable at compile time. Disable the rx interrupt to use it.

1.9.2009: release 3.5

• core: re-structure the usart code, added a non-interrupt based transmit word (TX), selectable at compile
time.

• lib: added xt>nfa that goes from the XT to the name field address.

• core: bugfix recurse.

• core: restructured EEPROM, never depend on fixed addresses for system values.

• core: added a dict_wl.inc file with most of the non-core wordlist commands.

11.4.2009: release 3.4

• core: renamed the words for the serial terminal to be more generic since they can deal with any serial port,
not only the first one.

• lib: dropped forget since it cannot work with multiple wordlists, fixed marker.

• core: changed again digit? stack effect (and fixed a little bug).

• core: number honors a leading &, $ or % sign to temporarily switch to DECIMAL, HEX or BIN base resp.
Thanks to Michael Kalus for factoring the code.

168 Chapter 8. History

http://amforth.svn.sourceforge.net/viewvc/amforth/incubator/

AmForth Documentation, Release 6.5

22.2.2009: release 3.3

• core: faster noop.

• added ANS94 search order wordlist.

• core: within had problems with signed boundaries, literal numbers are processed faster (again).

• core: improved digit? and number. They now report errors on invalid characters at the wrong position.
The following strings are no longer valid numbers: –1 or 0@ (in base hex).

• core: -1 spaces now prints nothing, Fix from Lothar Schmidt.

• core: (loop) (runtime of loop) now checks for equality only, as specified in ANS94.

10.1.2009: release 3.2

• core: bugfix for trailling 0x00 byte during itype.

• core: enable use of other usart port than 0.

• pc-host: Ken Staton wrote a nice pc based terminal with upload functionality.

• core: New controllers: ATmega328P and ATmega640.

• core: changed digit to digit? found in many other forth’s.

• core: new word within.

• core: split application dictionary definition into 2 parts, one for the lower flash, one for the upper (NRWW)
flash. Both can be empty, but need to exists.

• core: changed some names for internal constants (baudrate -> BAUD) and registers (EEPE vs EEWE).

• core: new directory drivers/ for low level driver functions. Currently only the generic ISR and the
USART0 interrupt handler.

10.11.2008: release 3.1

• core: icompare now has a similiar stack effect as compare.

• core: new word: environment?. Supports /hold query.

• core: Strings in flash (incl. names in the dictionary) contain now 16bit length information, previously only
8 bit.

17.10.2008: release 3.0

• core: s" new with interpreter semantics.

s" hello world" type`

works at the command prompt. The compiled version is

: hw s" hello world" itype ;

• core: Placement of Stacks is now an application setting. See example apps.

• core: added VM register A and B. See Stephen Pelc’ Slides for details. Uses Atmega Register R6:R7,
R8:R9 resp.

• core: added cmove as a primitve.

8.27. 22.2.2009: release 3.3 169

http://staton.us/electronics/remote_IO/atmega_bit_whacker.html
http://www.complang.tuwien.ac.at/anton/euroforth/ef08/papers/pelc.pdf

AmForth Documentation, Release 6.5

• core: f_cpu used the old (pre-2.7) stack order for double cell values.

• lib: moved some definitions to more appropriate files.

1.8.2008: release 2.9

• core: heap, here and edp are now VALUEs. dp is gone (use here)

• lib: more VT100 sequences.

• core: The TIB location and size are accessible with the VALUEs TIB and TIBSIZE.

• core: fixed TIBSIZE default configuration.

• lib: created math.frt, contains among others the standard words sm/rem, fm/mod.

• Alexander Guy fixed a bug in u*/mod.

• Bernard Mentink adapted Julian Noble’s Finite State Machine code.

• applications: Lubos Pekny designed a smart computer with a 4line character LCD and a PS/2 keyboard.
Details are in the Application Repository, a video is available as well.

27.6.2008: release 2.8

• core: Lubos Pekny found that -jtag sometimes used the wrong mcu register.

• core: Bernard Mentink wrote a Atmega128 device file, Thanks alot.

• core: Atmega88 & Atmega168 work too.

• core: Fixed regression for atmega128.

• core: Moved serial interface words to application dictionary (not every amforth installation may have a
serial terminal).

• library: Updated assembler from Lubos Pekny.

• examples: sieve benchmark, optimized for 1K RAM.

5.4.2007: release 2.7

• core, lib and sample applications are now in one package.

• restructured repository layout. Now the trunk has most of the sources.

• core: re-arranged the register mapping.

• core: m* was in fact um*.

• core: double cell numbers changed stack order: TOS is now the most significant cell.

• library: new: assembler written by Lubos Pekny, www.forth.cz. Thank you!

• examples: PWM example from Bruce Wolk. TWI/I2C EEPROM access

27.1.2008: release 2.6

• core: new defining words code and end-code. code starts a new dictionary header with the XT set to
the data field. The 2nd one appends the jmp NEXT call into the dictionary.

• core: removed the pre-assembled case / endcase words. Added them as forth library.

170 Chapter 8. History

http://amforth.svn.sourceforge.net/viewvc/amforth/applications
http://www.forth.cz/Download/App/LCD+KbdPS2.avi
http://www.forth.cz

AmForth Documentation, Release 6.5

• core: new words -jtag (turns off JTAG at runtime) and -wdt (turns off watch dog timer at runtime. They
need to be implemented as primitives due to timing requirements.

• core: quit: Keep base when handling an exception.

• library: TWI/I2C EEPROM Support.

6.12.2007: release 2.5

• Bug: hex 8000 . froze the controller. Now it prints -8000. Thanks to Lubos for the hint.

• Moved init of base from quit to cold. turnkey be used to change it permanently. Thanks to Lubos
for the hint.

• nice looking dumper words for RAM/EEPROM/FLASH, dropped idump.asm.

• Extended Upload utility (tools/amforth-upload.py) from piix: include files using following syn-
tax:

\ demo file
#include ans94/marker.frt
marker empty

• usart transmit (tx0) made more robust.

• User Area restructured for the new multitasker.

• added documentation: Karl’s User’s Manual and a Technical Guide.

11.10.2007: release 2.4

• Added AT90CAN128. Other Atmega128 style controllers should work too.

• lot of fine tuning.

• dropped the assembler device init portion.

• New file: dict_compiler.inc. Without these words the forth system is (more or less) a pure interactive
system without extensibility.

• new words [char], fill.

• re-arranged usart code. fixed bug when usart baud rate calculation leads to values greater 255.

• renamed /int to -int and int to +int, it’s more fortish ;=)

29.7.2007: release 2.3

• new words spaces and place.

• Improved i!.

• bugfixing runtime parts of do/loop and co.

• re-coded find and icompare for better readability.

• eliminated code duplets in some primitives.

• moved usart init from cold to application specific turn key action. Added error checking in receive module.

8.35. 6.12.2007: release 2.5 171

AmForth Documentation, Release 6.5

17.6.2007: release 2.2

• new download section: application

• optional dictionary is now part of the application, therefore renamed to dict_appl.

• new words: leave and ?do.

22.5.2007 release 2.1

• changed stack effect for # to ansi (from single cell value to double cell). Double cell values do not work
(yet).

• introduced deferred words instead of tick-variables. Works for EEPROM based vectors (turnkey), RAM
based (pause) and User based (emit etc) vectors.

• new words: wdr (Watchdog reset), d> and d< (double cell compare).

2.5.2007 release 2.0

• internal restructure of targets.

• new words: u> and u<.

• bugfixing interrupts.

• new word: log2 logarithm to base 2, or the number of the highest 1 bit.

• fixed wrong addresses for usart-io (esp. butterfly)

25.4.2007 release 1.9

• renamed dict_low.asm to dict_minimal.asm.

• new word parse (c – addr len) parses source for char delimited strings.

• new word sleep (–) puts the controller into (previously defined) sleep mode.

• new words s" (– addr len) parses TIB for ” character and compiles it into flash, s, (addr len –) does the
real copying of the string into flash at here together with the invisible word (sliteral) (– flash-addr
len).

• bugfix: f_cpu had wrong word order. Use swap as a temporary work around.‘

• re-wrote initialisation of usart0 (baud –) to forth code. Startup speed is taken from (eeprom) VALUE
baud0.

10.4.2007 release 1.8

• interrupt handling redesigned. Now every interrupt (except those for usart0) can be used. intcounter is
gone. New words are int@, int! and #int.

• double and mixed cell arithmetics.‘

• bugfix: proper initialization of data stack pointer. Thanks to Maciej Witkowiak.

• move TOS into register pair.

172 Chapter 8. History

AmForth Documentation, Release 6.5

3.4.2007 release 1.7

• new word: f_cpu sets a double cell value with the cpu clock rate.

• hld is now at pad to save RAM.

• pad did return some compile-time stochastic value‘

• lots of internal changes.

• optional dictionary: d-, d+, s>d and d>s.

25.3.2007 release 1.6

• split blocks/ans.frt into pieces.

• sign no longer inserts a space for non-negative values.

• new word: /key. It is vectorized via ’/key and gets called by accept to signal the sender to stop
transmission. See blocks/xonxoff.frt for example usage.

• replaces up with up@ and up!.

• new word: j (– n).

• new word: ?execute (xt|0 –) if non-zero execute the XT.

• The Atmega644 works fine :=) but needs the Atmel assembler (see FAQ) :=(

• Bugfix: +! did a + only.

• Bugfix: too many spaces in . (dot).

• give user variables rp and sp a name.

14.3.2007 release 1.5

• changed: itype and (new) icount refactored by Michael Kalus. These words now have similiar stack
effects as there RAM counterparts.

• changed: . now operates on signed values.

• new word: u/mod is basically the former /mod.

• new word: u. to display unsigned values.

• fixed bug in /mod for values less -FF (hex).

• create left the address of the XT insted of the PFA. Fixed.

• deleted word: idump. It is now in the file blocks/misc.frt.

• new word: :noname (– xt) creates headerless entry in the dictionary.

• new word: cold as main entry point. It executes the turnkey action. abort & co do not trigger the turnkey
action.

5.3.2007 release 1.4

• pad is now in the unsed (according to heap) ram. That may help word to store longer strings.

• new word: unused (– n) gives the number of unused flash cells in the dictionary.

• /mod (and / and mod) now honor signed numbers, division is symmetric.

8.43. 3.4.2007 release 1.7 173

AmForth Documentation, Release 6.5

• new word: abort"

• quit now aborts on every catched exception.

• quit no longer prints anything, ver is now a turnkey action.

• new optional dictionary, included at compiletime. Contains now case & Co and some d- words for
double cell arithmetics.

24.2.2007 release 1.3

• bug: digit did not work properly

• bug: <: equal is not less

• interrupts are processed faster

• Interrupt counter are now only 1 byte long (access with c@)

• change: allot works now for ram not for flash

• added/corrected stack comments

• bug: create leaves flash address insted of first cell content

• change: .s nicer for empty stack

• internal: i! internally completly turns off interrupts

• bug: abort now works again, error was in quit

• bug: while and repeat changed stack effects

• bug: r@ now works correctly

• new word: immediate

• removed words: forget, postpone (these and many more are now in the blocks/ans.frt library)

• bug: if ’ (tick) does not find the word, it now throws the exception -13 Many thanks to Ulrich Hoffmann
for providing feedback and corrections!

3.2.2007 release 1.2

• anyone missed emit??.

• increased user area to 24 bytes (12 cells). Fixed a overlap between handler and emit ff.

• AVR AVR Butterfly works (again). Many thanks to the German FIG for donating one.

• internal changes for multitarget development (for the AREXX asuro minirobot).

20.1.2007 release 1.1

• emit, key and key? are now vectored via user based variables.

• forget frees most of the flash space too

• internal go back for i! to previous code

• Code for Atmega8 was broken due to nrww flash overflow (found by Milan Horkel)

• Bugfix: backspace key in accept now stops at beginning of line (found by Milan Horkel)

174 Chapter 8. History

http://www.forth-ev.de/

AmForth Documentation, Release 6.5

4.1.2007 release 1.0

• new immediate word: [’]

• new word user defines user variables

• new controller: atmega169 (Atmel Butterfly)

• renamed eheap to edp.

17.12.2006 release 0.9

• interrupts in high level forth colon words (INT0 and INT1 for now).

• new word: noop a colon word for doing nothing.

• number respects minus sign

• changed turnkey into ’turnkey. The "turn-off" value is now 0 (zero)

• new words: pause and ’pause. pause will execute the XT stored in ’pause (a RAM cell) when non
zero

• handler (used by cactch and throw) is a USER variable.

7.12.2006 release 0.8

• new words: create, does>, up, 0

• Support for user variable, turned base, rp0 and sp0 into user variables

• words like (do) which should not by called by user are now invisible to save nrww flash space

• bugfix for negative increment for +loop.

24.11.2006 release 0.7

• new word: turnkey: executed whenever quit starts.

• numbers may contain lower case characters (if base permits)

• bugfixing case & co.

• number emits -13 if an invalid character is found

• renamed vheader to (create)

• abort re-initializes both stacks

• made backslash \ immediate

20.11.2006 release 0.6

• backspace now works in accept

• depth based on sp0/sp@

• “unused” control characters are treated as spaces

• bugfixes for (loop) and (+lopp).

8.50. 4.1.2007 release 1.0 175

AmForth Documentation, Release 6.5

• New words: 1ms busy waits 1 millisecond

13.11.2006 release 0.5

• definition files for varios atmega types

• core wordlist should be complete

• internal cleanups and bugfixes

5.11.2006 release 0.4

• start using catch/throw

• Atmega8 works fine

• few new words (case, comments)

• nicer prompt

31.10.2006 release 0.3

• New website

• Atmega16 works fine

• Bugfixing, true flag always 0xffff

27.10.2006 release 0.2

• Compiler works

• Many new wrds

16.10.2006 release 0.1

• first public release

• interpreter over serial terminal

176 Chapter 8. History

	User's Manual
	User's Manual For Linux
	User's Manual for Windows
	Instructions for Building amforth-5-1 using Atmel Studio 6.1 Components

	FAQ
	Where do I find more information?
	How do I start with amforth?
	How do I use amforth interactively?
	What means ??
	There are no hexfiles in the distribution archive!
	I get no serial prompt!
	What do all the words do?
	I miss a word!
	Can I embed amforth into other programs?
	Can I use code written in C (or any other language) with/in amforth?
	What means the GPL for my programs?
	Why should I send you my code?
	Does amforth run on hardware xy?
	What about the fuses?
	What about boot loaders?
	What do I need for linux?
	How do I use Atmel's assembler with linux?
	What resources are available in my own assembly words?
	What is the release policy?
	How do I send forth code to the system?
	I found a bug

	Technical Guide
	First Steps
	Architecture
	Compiler
	Standard Wordlists
	Hardware
	Source Organization
	Tools

	Commented Projects
	Nodes on a RS485 Bus
	Date/Time to unix time and back

	Cookbook
	Popular Boards
	General Code Examples
	Programming and Debugging
	Hardware Modules (AVR)
	Hardware Modules (MSP430)

	Recognizers
	Version 4
	Outdated
	Namespace RFD

	Reference Card
	General
	Arithmetics (AVR8)
	Compare (AVR8)
	Compiler (AVR8)
	Dictionary (AVR8)
	Environment (AVR8)
	Extended VM (AVR8)
	Interrupt (AVR8)
	Logic (AVR8)
	MCU (AVR8)
	Memory (AVR8)
	Multitasking (AVR8)
	Numeric IO (AVR8)
	Search Order (AVR8)
	Stack (AVR8)
	String (AVR8)
	System (AVR8)
	System Value (AVR8)
	System Variable (AVR8)
	Time (AVR8)
	Tools (AVR8)

	History
	9.7.2015: release 5.9
	25.3.2015: release 5.8
	1.2.2015: release 5.7
	22.12.2014: release 5.6
	6.10.2014: release 5.5
	16.8.2014: release 5.4
	7.5.2013: release 5.3
	23.12.2013: release 5.2
	5.4.2013: release 5.1
	27.12.2012: release 5.0
	27.7.2012: release 4.9
	26.3.2012: release 4.8
	4.2.2012: release 4.7
	6.10.2011: release 4.6
	29.6.2011: release 4.5
	24.5.2011: release 4.4
	1.5.2011: release 4.3
	19.9.2010: release 4.2
	2.9.2010: release 4.1
	1.7.2010: release 4.0
	25.5.2010: release 3.9
	25.4.2010: release 3.8
	24.1.2010: release 3.7
	1.10.2009: release 3.6
	1.9.2009: release 3.5
	11.4.2009: release 3.4
	22.2.2009: release 3.3
	10.1.2009: release 3.2
	10.11.2008: release 3.1
	17.10.2008: release 3.0
	1.8.2008: release 2.9
	27.6.2008: release 2.8
	5.4.2007: release 2.7
	27.1.2008: release 2.6
	6.12.2007: release 2.5
	11.10.2007: release 2.4
	29.7.2007: release 2.3
	17.6.2007: release 2.2
	22.5.2007 release 2.1
	2.5.2007 release 2.0
	25.4.2007 release 1.9
	10.4.2007 release 1.8
	3.4.2007 release 1.7
	25.3.2007 release 1.6
	14.3.2007 release 1.5
	5.3.2007 release 1.4
	24.2.2007 release 1.3
	3.2.2007 release 1.2
	20.1.2007 release 1.1
	4.1.2007 release 1.0
	17.12.2006 release 0.9
	7.12.2006 release 0.8
	24.11.2006 release 0.7
	20.11.2006 release 0.6
	13.11.2006 release 0.5
	5.11.2006 release 0.4
	31.10.2006 release 0.3
	27.10.2006 release 0.2
	16.10.2006 release 0.1

