summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/text/language/match.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/text/language/match.go')
-rw-r--r--vendor/golang.org/x/text/language/match.go933
1 files changed, 933 insertions, 0 deletions
diff --git a/vendor/golang.org/x/text/language/match.go b/vendor/golang.org/x/text/language/match.go
new file mode 100644
index 0000000..15b74d1
--- /dev/null
+++ b/vendor/golang.org/x/text/language/match.go
@@ -0,0 +1,933 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package language
+
+import "errors"
+
+// A MatchOption configures a Matcher.
+type MatchOption func(*matcher)
+
+// PreferSameScript will, in the absence of a match, result in the first
+// preferred tag with the same script as a supported tag to match this supported
+// tag. The default is currently true, but this may change in the future.
+func PreferSameScript(preferSame bool) MatchOption {
+ return func(m *matcher) { m.preferSameScript = preferSame }
+}
+
+// TODO(v1.0.0): consider making Matcher a concrete type, instead of interface.
+// There doesn't seem to be too much need for multiple types.
+// Making it a concrete type allows MatchStrings to be a method, which will
+// improve its discoverability.
+
+// MatchStrings parses and matches the given strings until one of them matches
+// the language in the Matcher. A string may be an Accept-Language header as
+// handled by ParseAcceptLanguage. The default language is returned if no
+// other language matched.
+func MatchStrings(m Matcher, lang ...string) (tag Tag, index int) {
+ for _, accept := range lang {
+ desired, _, err := ParseAcceptLanguage(accept)
+ if err != nil {
+ continue
+ }
+ if tag, index, conf := m.Match(desired...); conf != No {
+ return tag, index
+ }
+ }
+ tag, index, _ = m.Match()
+ return
+}
+
+// Matcher is the interface that wraps the Match method.
+//
+// Match returns the best match for any of the given tags, along with
+// a unique index associated with the returned tag and a confidence
+// score.
+type Matcher interface {
+ Match(t ...Tag) (tag Tag, index int, c Confidence)
+}
+
+// Comprehends reports the confidence score for a speaker of a given language
+// to being able to comprehend the written form of an alternative language.
+func Comprehends(speaker, alternative Tag) Confidence {
+ _, _, c := NewMatcher([]Tag{alternative}).Match(speaker)
+ return c
+}
+
+// NewMatcher returns a Matcher that matches an ordered list of preferred tags
+// against a list of supported tags based on written intelligibility, closeness
+// of dialect, equivalence of subtags and various other rules. It is initialized
+// with the list of supported tags. The first element is used as the default
+// value in case no match is found.
+//
+// Its Match method matches the first of the given Tags to reach a certain
+// confidence threshold. The tags passed to Match should therefore be specified
+// in order of preference. Extensions are ignored for matching.
+//
+// The index returned by the Match method corresponds to the index of the
+// matched tag in t, but is augmented with the Unicode extension ('u')of the
+// corresponding preferred tag. This allows user locale options to be passed
+// transparently.
+func NewMatcher(t []Tag, options ...MatchOption) Matcher {
+ return newMatcher(t, options)
+}
+
+func (m *matcher) Match(want ...Tag) (t Tag, index int, c Confidence) {
+ match, w, c := m.getBest(want...)
+ if match != nil {
+ t, index = match.tag, match.index
+ } else {
+ // TODO: this should be an option
+ t = m.default_.tag
+ if m.preferSameScript {
+ outer:
+ for _, w := range want {
+ script, _ := w.Script()
+ if script.scriptID == 0 {
+ // Don't do anything if there is no script, such as with
+ // private subtags.
+ continue
+ }
+ for i, h := range m.supported {
+ if script.scriptID == h.maxScript {
+ t, index = h.tag, i
+ break outer
+ }
+ }
+ }
+ }
+ // TODO: select first language tag based on script.
+ }
+ if w.region != 0 && t.region != 0 && t.region.contains(w.region) {
+ t, _ = Raw.Compose(t, Region{w.region})
+ }
+ // Copy options from the user-provided tag into the result tag. This is hard
+ // to do after the fact, so we do it here.
+ // TODO: add in alternative variants to -u-va-.
+ // TODO: add preferred region to -u-rg-.
+ if e := w.Extensions(); len(e) > 0 {
+ t, _ = Raw.Compose(t, e)
+ }
+ return t, index, c
+}
+
+type scriptRegionFlags uint8
+
+const (
+ isList = 1 << iota
+ scriptInFrom
+ regionInFrom
+)
+
+func (t *Tag) setUndefinedLang(id langID) {
+ if t.lang == 0 {
+ t.lang = id
+ }
+}
+
+func (t *Tag) setUndefinedScript(id scriptID) {
+ if t.script == 0 {
+ t.script = id
+ }
+}
+
+func (t *Tag) setUndefinedRegion(id regionID) {
+ if t.region == 0 || t.region.contains(id) {
+ t.region = id
+ }
+}
+
+// ErrMissingLikelyTagsData indicates no information was available
+// to compute likely values of missing tags.
+var ErrMissingLikelyTagsData = errors.New("missing likely tags data")
+
+// addLikelySubtags sets subtags to their most likely value, given the locale.
+// In most cases this means setting fields for unknown values, but in some
+// cases it may alter a value. It returns an ErrMissingLikelyTagsData error
+// if the given locale cannot be expanded.
+func (t Tag) addLikelySubtags() (Tag, error) {
+ id, err := addTags(t)
+ if err != nil {
+ return t, err
+ } else if id.equalTags(t) {
+ return t, nil
+ }
+ id.remakeString()
+ return id, nil
+}
+
+// specializeRegion attempts to specialize a group region.
+func specializeRegion(t *Tag) bool {
+ if i := regionInclusion[t.region]; i < nRegionGroups {
+ x := likelyRegionGroup[i]
+ if langID(x.lang) == t.lang && scriptID(x.script) == t.script {
+ t.region = regionID(x.region)
+ }
+ return true
+ }
+ return false
+}
+
+func addTags(t Tag) (Tag, error) {
+ // We leave private use identifiers alone.
+ if t.private() {
+ return t, nil
+ }
+ if t.script != 0 && t.region != 0 {
+ if t.lang != 0 {
+ // already fully specified
+ specializeRegion(&t)
+ return t, nil
+ }
+ // Search matches for und-script-region. Note that for these cases
+ // region will never be a group so there is no need to check for this.
+ list := likelyRegion[t.region : t.region+1]
+ if x := list[0]; x.flags&isList != 0 {
+ list = likelyRegionList[x.lang : x.lang+uint16(x.script)]
+ }
+ for _, x := range list {
+ // Deviating from the spec. See match_test.go for details.
+ if scriptID(x.script) == t.script {
+ t.setUndefinedLang(langID(x.lang))
+ return t, nil
+ }
+ }
+ }
+ if t.lang != 0 {
+ // Search matches for lang-script and lang-region, where lang != und.
+ if t.lang < langNoIndexOffset {
+ x := likelyLang[t.lang]
+ if x.flags&isList != 0 {
+ list := likelyLangList[x.region : x.region+uint16(x.script)]
+ if t.script != 0 {
+ for _, x := range list {
+ if scriptID(x.script) == t.script && x.flags&scriptInFrom != 0 {
+ t.setUndefinedRegion(regionID(x.region))
+ return t, nil
+ }
+ }
+ } else if t.region != 0 {
+ count := 0
+ goodScript := true
+ tt := t
+ for _, x := range list {
+ // We visit all entries for which the script was not
+ // defined, including the ones where the region was not
+ // defined. This allows for proper disambiguation within
+ // regions.
+ if x.flags&scriptInFrom == 0 && t.region.contains(regionID(x.region)) {
+ tt.region = regionID(x.region)
+ tt.setUndefinedScript(scriptID(x.script))
+ goodScript = goodScript && tt.script == scriptID(x.script)
+ count++
+ }
+ }
+ if count == 1 {
+ return tt, nil
+ }
+ // Even if we fail to find a unique Region, we might have
+ // an unambiguous script.
+ if goodScript {
+ t.script = tt.script
+ }
+ }
+ }
+ }
+ } else {
+ // Search matches for und-script.
+ if t.script != 0 {
+ x := likelyScript[t.script]
+ if x.region != 0 {
+ t.setUndefinedRegion(regionID(x.region))
+ t.setUndefinedLang(langID(x.lang))
+ return t, nil
+ }
+ }
+ // Search matches for und-region. If und-script-region exists, it would
+ // have been found earlier.
+ if t.region != 0 {
+ if i := regionInclusion[t.region]; i < nRegionGroups {
+ x := likelyRegionGroup[i]
+ if x.region != 0 {
+ t.setUndefinedLang(langID(x.lang))
+ t.setUndefinedScript(scriptID(x.script))
+ t.region = regionID(x.region)
+ }
+ } else {
+ x := likelyRegion[t.region]
+ if x.flags&isList != 0 {
+ x = likelyRegionList[x.lang]
+ }
+ if x.script != 0 && x.flags != scriptInFrom {
+ t.setUndefinedLang(langID(x.lang))
+ t.setUndefinedScript(scriptID(x.script))
+ return t, nil
+ }
+ }
+ }
+ }
+
+ // Search matches for lang.
+ if t.lang < langNoIndexOffset {
+ x := likelyLang[t.lang]
+ if x.flags&isList != 0 {
+ x = likelyLangList[x.region]
+ }
+ if x.region != 0 {
+ t.setUndefinedScript(scriptID(x.script))
+ t.setUndefinedRegion(regionID(x.region))
+ }
+ specializeRegion(&t)
+ if t.lang == 0 {
+ t.lang = _en // default language
+ }
+ return t, nil
+ }
+ return t, ErrMissingLikelyTagsData
+}
+
+func (t *Tag) setTagsFrom(id Tag) {
+ t.lang = id.lang
+ t.script = id.script
+ t.region = id.region
+}
+
+// minimize removes the region or script subtags from t such that
+// t.addLikelySubtags() == t.minimize().addLikelySubtags().
+func (t Tag) minimize() (Tag, error) {
+ t, err := minimizeTags(t)
+ if err != nil {
+ return t, err
+ }
+ t.remakeString()
+ return t, nil
+}
+
+// minimizeTags mimics the behavior of the ICU 51 C implementation.
+func minimizeTags(t Tag) (Tag, error) {
+ if t.equalTags(und) {
+ return t, nil
+ }
+ max, err := addTags(t)
+ if err != nil {
+ return t, err
+ }
+ for _, id := range [...]Tag{
+ {lang: t.lang},
+ {lang: t.lang, region: t.region},
+ {lang: t.lang, script: t.script},
+ } {
+ if x, err := addTags(id); err == nil && max.equalTags(x) {
+ t.setTagsFrom(id)
+ break
+ }
+ }
+ return t, nil
+}
+
+// Tag Matching
+// CLDR defines an algorithm for finding the best match between two sets of language
+// tags. The basic algorithm defines how to score a possible match and then find
+// the match with the best score
+// (see http://www.unicode.org/reports/tr35/#LanguageMatching).
+// Using scoring has several disadvantages. The scoring obfuscates the importance of
+// the various factors considered, making the algorithm harder to understand. Using
+// scoring also requires the full score to be computed for each pair of tags.
+//
+// We will use a different algorithm which aims to have the following properties:
+// - clarity on the precedence of the various selection factors, and
+// - improved performance by allowing early termination of a comparison.
+//
+// Matching algorithm (overview)
+// Input:
+// - supported: a set of supported tags
+// - default: the default tag to return in case there is no match
+// - desired: list of desired tags, ordered by preference, starting with
+// the most-preferred.
+//
+// Algorithm:
+// 1) Set the best match to the lowest confidence level
+// 2) For each tag in "desired":
+// a) For each tag in "supported":
+// 1) compute the match between the two tags.
+// 2) if the match is better than the previous best match, replace it
+// with the new match. (see next section)
+// b) if the current best match is Exact and pin is true the result will be
+// frozen to the language found thusfar, although better matches may
+// still be found for the same language.
+// 3) If the best match so far is below a certain threshold, return "default".
+//
+// Ranking:
+// We use two phases to determine whether one pair of tags are a better match
+// than another pair of tags. First, we determine a rough confidence level. If the
+// levels are different, the one with the highest confidence wins.
+// Second, if the rough confidence levels are identical, we use a set of tie-breaker
+// rules.
+//
+// The confidence level of matching a pair of tags is determined by finding the
+// lowest confidence level of any matches of the corresponding subtags (the
+// result is deemed as good as its weakest link).
+// We define the following levels:
+// Exact - An exact match of a subtag, before adding likely subtags.
+// MaxExact - An exact match of a subtag, after adding likely subtags.
+// [See Note 2].
+// High - High level of mutual intelligibility between different subtag
+// variants.
+// Low - Low level of mutual intelligibility between different subtag
+// variants.
+// No - No mutual intelligibility.
+//
+// The following levels can occur for each type of subtag:
+// Base: Exact, MaxExact, High, Low, No
+// Script: Exact, MaxExact [see Note 3], Low, No
+// Region: Exact, MaxExact, High
+// Variant: Exact, High
+// Private: Exact, No
+//
+// Any result with a confidence level of Low or higher is deemed a possible match.
+// Once a desired tag matches any of the supported tags with a level of MaxExact
+// or higher, the next desired tag is not considered (see Step 2.b).
+// Note that CLDR provides languageMatching data that defines close equivalence
+// classes for base languages, scripts and regions.
+//
+// Tie-breaking
+// If we get the same confidence level for two matches, we apply a sequence of
+// tie-breaking rules. The first that succeeds defines the result. The rules are
+// applied in the following order.
+// 1) Original language was defined and was identical.
+// 2) Original region was defined and was identical.
+// 3) Distance between two maximized regions was the smallest.
+// 4) Original script was defined and was identical.
+// 5) Distance from want tag to have tag using the parent relation [see Note 5.]
+// If there is still no winner after these rules are applied, the first match
+// found wins.
+//
+// Notes:
+// [2] In practice, as matching of Exact is done in a separate phase from
+// matching the other levels, we reuse the Exact level to mean MaxExact in
+// the second phase. As a consequence, we only need the levels defined by
+// the Confidence type. The MaxExact confidence level is mapped to High in
+// the public API.
+// [3] We do not differentiate between maximized script values that were derived
+// from suppressScript versus most likely tag data. We determined that in
+// ranking the two, one ranks just after the other. Moreover, the two cannot
+// occur concurrently. As a consequence, they are identical for practical
+// purposes.
+// [4] In case of deprecated, macro-equivalents and legacy mappings, we assign
+// the MaxExact level to allow iw vs he to still be a closer match than
+// en-AU vs en-US, for example.
+// [5] In CLDR a locale inherits fields that are unspecified for this locale
+// from its parent. Therefore, if a locale is a parent of another locale,
+// it is a strong measure for closeness, especially when no other tie
+// breaker rule applies. One could also argue it is inconsistent, for
+// example, when pt-AO matches pt (which CLDR equates with pt-BR), even
+// though its parent is pt-PT according to the inheritance rules.
+//
+// Implementation Details:
+// There are several performance considerations worth pointing out. Most notably,
+// we preprocess as much as possible (within reason) at the time of creation of a
+// matcher. This includes:
+// - creating a per-language map, which includes data for the raw base language
+// and its canonicalized variant (if applicable),
+// - expanding entries for the equivalence classes defined in CLDR's
+// languageMatch data.
+// The per-language map ensures that typically only a very small number of tags
+// need to be considered. The pre-expansion of canonicalized subtags and
+// equivalence classes reduces the amount of map lookups that need to be done at
+// runtime.
+
+// matcher keeps a set of supported language tags, indexed by language.
+type matcher struct {
+ default_ *haveTag
+ supported []*haveTag
+ index map[langID]*matchHeader
+ passSettings bool
+ preferSameScript bool
+}
+
+// matchHeader has the lists of tags for exact matches and matches based on
+// maximized and canonicalized tags for a given language.
+type matchHeader struct {
+ haveTags []*haveTag
+ original bool
+}
+
+// haveTag holds a supported Tag and its maximized script and region. The maximized
+// or canonicalized language is not stored as it is not needed during matching.
+type haveTag struct {
+ tag Tag
+
+ // index of this tag in the original list of supported tags.
+ index int
+
+ // conf is the maximum confidence that can result from matching this haveTag.
+ // When conf < Exact this means it was inserted after applying a CLDR equivalence rule.
+ conf Confidence
+
+ // Maximized region and script.
+ maxRegion regionID
+ maxScript scriptID
+
+ // altScript may be checked as an alternative match to maxScript. If altScript
+ // matches, the confidence level for this match is Low. Theoretically there
+ // could be multiple alternative scripts. This does not occur in practice.
+ altScript scriptID
+
+ // nextMax is the index of the next haveTag with the same maximized tags.
+ nextMax uint16
+}
+
+func makeHaveTag(tag Tag, index int) (haveTag, langID) {
+ max := tag
+ if tag.lang != 0 || tag.region != 0 || tag.script != 0 {
+ max, _ = max.canonicalize(All)
+ max, _ = addTags(max)
+ max.remakeString()
+ }
+ return haveTag{tag, index, Exact, max.region, max.script, altScript(max.lang, max.script), 0}, max.lang
+}
+
+// altScript returns an alternative script that may match the given script with
+// a low confidence. At the moment, the langMatch data allows for at most one
+// script to map to another and we rely on this to keep the code simple.
+func altScript(l langID, s scriptID) scriptID {
+ for _, alt := range matchScript {
+ // TODO: also match cases where language is not the same.
+ if (langID(alt.wantLang) == l || langID(alt.haveLang) == l) &&
+ scriptID(alt.haveScript) == s {
+ return scriptID(alt.wantScript)
+ }
+ }
+ return 0
+}
+
+// addIfNew adds a haveTag to the list of tags only if it is a unique tag.
+// Tags that have the same maximized values are linked by index.
+func (h *matchHeader) addIfNew(n haveTag, exact bool) {
+ h.original = h.original || exact
+ // Don't add new exact matches.
+ for _, v := range h.haveTags {
+ if v.tag.equalsRest(n.tag) {
+ return
+ }
+ }
+ // Allow duplicate maximized tags, but create a linked list to allow quickly
+ // comparing the equivalents and bail out.
+ for i, v := range h.haveTags {
+ if v.maxScript == n.maxScript &&
+ v.maxRegion == n.maxRegion &&
+ v.tag.variantOrPrivateTagStr() == n.tag.variantOrPrivateTagStr() {
+ for h.haveTags[i].nextMax != 0 {
+ i = int(h.haveTags[i].nextMax)
+ }
+ h.haveTags[i].nextMax = uint16(len(h.haveTags))
+ break
+ }
+ }
+ h.haveTags = append(h.haveTags, &n)
+}
+
+// header returns the matchHeader for the given language. It creates one if
+// it doesn't already exist.
+func (m *matcher) header(l langID) *matchHeader {
+ if h := m.index[l]; h != nil {
+ return h
+ }
+ h := &matchHeader{}
+ m.index[l] = h
+ return h
+}
+
+func toConf(d uint8) Confidence {
+ if d <= 10 {
+ return High
+ }
+ if d < 30 {
+ return Low
+ }
+ return No
+}
+
+// newMatcher builds an index for the given supported tags and returns it as
+// a matcher. It also expands the index by considering various equivalence classes
+// for a given tag.
+func newMatcher(supported []Tag, options []MatchOption) *matcher {
+ m := &matcher{
+ index: make(map[langID]*matchHeader),
+ preferSameScript: true,
+ }
+ for _, o := range options {
+ o(m)
+ }
+ if len(supported) == 0 {
+ m.default_ = &haveTag{}
+ return m
+ }
+ // Add supported languages to the index. Add exact matches first to give
+ // them precedence.
+ for i, tag := range supported {
+ pair, _ := makeHaveTag(tag, i)
+ m.header(tag.lang).addIfNew(pair, true)
+ m.supported = append(m.supported, &pair)
+ }
+ m.default_ = m.header(supported[0].lang).haveTags[0]
+ // Keep these in two different loops to support the case that two equivalent
+ // languages are distinguished, such as iw and he.
+ for i, tag := range supported {
+ pair, max := makeHaveTag(tag, i)
+ if max != tag.lang {
+ m.header(max).addIfNew(pair, true)
+ }
+ }
+
+ // update is used to add indexes in the map for equivalent languages.
+ // update will only add entries to original indexes, thus not computing any
+ // transitive relations.
+ update := func(want, have uint16, conf Confidence) {
+ if hh := m.index[langID(have)]; hh != nil {
+ if !hh.original {
+ return
+ }
+ hw := m.header(langID(want))
+ for _, ht := range hh.haveTags {
+ v := *ht
+ if conf < v.conf {
+ v.conf = conf
+ }
+ v.nextMax = 0 // this value needs to be recomputed
+ if v.altScript != 0 {
+ v.altScript = altScript(langID(want), v.maxScript)
+ }
+ hw.addIfNew(v, conf == Exact && hh.original)
+ }
+ }
+ }
+
+ // Add entries for languages with mutual intelligibility as defined by CLDR's
+ // languageMatch data.
+ for _, ml := range matchLang {
+ update(ml.want, ml.have, toConf(ml.distance))
+ if !ml.oneway {
+ update(ml.have, ml.want, toConf(ml.distance))
+ }
+ }
+
+ // Add entries for possible canonicalizations. This is an optimization to
+ // ensure that only one map lookup needs to be done at runtime per desired tag.
+ // First we match deprecated equivalents. If they are perfect equivalents
+ // (their canonicalization simply substitutes a different language code, but
+ // nothing else), the match confidence is Exact, otherwise it is High.
+ for i, lm := range langAliasMap {
+ // If deprecated codes match and there is no fiddling with the script or
+ // or region, we consider it an exact match.
+ conf := Exact
+ if langAliasTypes[i] != langMacro {
+ if !isExactEquivalent(langID(lm.from)) {
+ conf = High
+ }
+ update(lm.to, lm.from, conf)
+ }
+ update(lm.from, lm.to, conf)
+ }
+ return m
+}
+
+// getBest gets the best matching tag in m for any of the given tags, taking into
+// account the order of preference of the given tags.
+func (m *matcher) getBest(want ...Tag) (got *haveTag, orig Tag, c Confidence) {
+ best := bestMatch{}
+ for i, w := range want {
+ var max Tag
+ // Check for exact match first.
+ h := m.index[w.lang]
+ if w.lang != 0 {
+ if h == nil {
+ continue
+ }
+ // Base language is defined.
+ max, _ = w.canonicalize(Legacy | Deprecated | Macro)
+ // A region that is added through canonicalization is stronger than
+ // a maximized region: set it in the original (e.g. mo -> ro-MD).
+ if w.region != max.region {
+ w.region = max.region
+ }
+ // TODO: should we do the same for scripts?
+ // See test case: en, sr, nl ; sh ; sr
+ max, _ = addTags(max)
+ } else {
+ // Base language is not defined.
+ if h != nil {
+ for i := range h.haveTags {
+ have := h.haveTags[i]
+ if have.tag.equalsRest(w) {
+ return have, w, Exact
+ }
+ }
+ }
+ if w.script == 0 && w.region == 0 {
+ // We skip all tags matching und for approximate matching, including
+ // private tags.
+ continue
+ }
+ max, _ = addTags(w)
+ if h = m.index[max.lang]; h == nil {
+ continue
+ }
+ }
+ pin := true
+ for _, t := range want[i+1:] {
+ if w.lang == t.lang {
+ pin = false
+ break
+ }
+ }
+ // Check for match based on maximized tag.
+ for i := range h.haveTags {
+ have := h.haveTags[i]
+ best.update(have, w, max.script, max.region, pin)
+ if best.conf == Exact {
+ for have.nextMax != 0 {
+ have = h.haveTags[have.nextMax]
+ best.update(have, w, max.script, max.region, pin)
+ }
+ return best.have, best.want, best.conf
+ }
+ }
+ }
+ if best.conf <= No {
+ if len(want) != 0 {
+ return nil, want[0], No
+ }
+ return nil, Tag{}, No
+ }
+ return best.have, best.want, best.conf
+}
+
+// bestMatch accumulates the best match so far.
+type bestMatch struct {
+ have *haveTag
+ want Tag
+ conf Confidence
+ pinnedRegion regionID
+ pinLanguage bool
+ sameRegionGroup bool
+ // Cached results from applying tie-breaking rules.
+ origLang bool
+ origReg bool
+ paradigmReg bool
+ regGroupDist uint8
+ origScript bool
+}
+
+// update updates the existing best match if the new pair is considered to be a
+// better match. To determine if the given pair is a better match, it first
+// computes the rough confidence level. If this surpasses the current match, it
+// will replace it and update the tie-breaker rule cache. If there is a tie, it
+// proceeds with applying a series of tie-breaker rules. If there is no
+// conclusive winner after applying the tie-breaker rules, it leaves the current
+// match as the preferred match.
+//
+// If pin is true and have and tag are a strong match, it will henceforth only
+// consider matches for this language. This corresponds to the nothing that most
+// users have a strong preference for the first defined language. A user can
+// still prefer a second language over a dialect of the preferred language by
+// explicitly specifying dialects, e.g. "en, nl, en-GB". In this case pin should
+// be false.
+func (m *bestMatch) update(have *haveTag, tag Tag, maxScript scriptID, maxRegion regionID, pin bool) {
+ // Bail if the maximum attainable confidence is below that of the current best match.
+ c := have.conf
+ if c < m.conf {
+ return
+ }
+ // Don't change the language once we already have found an exact match.
+ if m.pinLanguage && tag.lang != m.want.lang {
+ return
+ }
+ // Pin the region group if we are comparing tags for the same language.
+ if tag.lang == m.want.lang && m.sameRegionGroup {
+ _, sameGroup := regionGroupDist(m.pinnedRegion, have.maxRegion, have.maxScript, m.want.lang)
+ if !sameGroup {
+ return
+ }
+ }
+ if c == Exact && have.maxScript == maxScript {
+ // If there is another language and then another entry of this language,
+ // don't pin anything, otherwise pin the language.
+ m.pinLanguage = pin
+ }
+ if have.tag.equalsRest(tag) {
+ } else if have.maxScript != maxScript {
+ // There is usually very little comprehension between different scripts.
+ // In a few cases there may still be Low comprehension. This possibility
+ // is pre-computed and stored in have.altScript.
+ if Low < m.conf || have.altScript != maxScript {
+ return
+ }
+ c = Low
+ } else if have.maxRegion != maxRegion {
+ if High < c {
+ // There is usually a small difference between languages across regions.
+ c = High
+ }
+ }
+
+ // We store the results of the computations of the tie-breaker rules along
+ // with the best match. There is no need to do the checks once we determine
+ // we have a winner, but we do still need to do the tie-breaker computations.
+ // We use "beaten" to keep track if we still need to do the checks.
+ beaten := false // true if the new pair defeats the current one.
+ if c != m.conf {
+ if c < m.conf {
+ return
+ }
+ beaten = true
+ }
+
+ // Tie-breaker rules:
+ // We prefer if the pre-maximized language was specified and identical.
+ origLang := have.tag.lang == tag.lang && tag.lang != 0
+ if !beaten && m.origLang != origLang {
+ if m.origLang {
+ return
+ }
+ beaten = true
+ }
+
+ // We prefer if the pre-maximized region was specified and identical.
+ origReg := have.tag.region == tag.region && tag.region != 0
+ if !beaten && m.origReg != origReg {
+ if m.origReg {
+ return
+ }
+ beaten = true
+ }
+
+ regGroupDist, sameGroup := regionGroupDist(have.maxRegion, maxRegion, maxScript, tag.lang)
+ if !beaten && m.regGroupDist != regGroupDist {
+ if regGroupDist > m.regGroupDist {
+ return
+ }
+ beaten = true
+ }
+
+ paradigmReg := isParadigmLocale(tag.lang, have.maxRegion)
+ if !beaten && m.paradigmReg != paradigmReg {
+ if !paradigmReg {
+ return
+ }
+ beaten = true
+ }
+
+ // Next we prefer if the pre-maximized script was specified and identical.
+ origScript := have.tag.script == tag.script && tag.script != 0
+ if !beaten && m.origScript != origScript {
+ if m.origScript {
+ return
+ }
+ beaten = true
+ }
+
+ // Update m to the newly found best match.
+ if beaten {
+ m.have = have
+ m.want = tag
+ m.conf = c
+ m.pinnedRegion = maxRegion
+ m.sameRegionGroup = sameGroup
+ m.origLang = origLang
+ m.origReg = origReg
+ m.paradigmReg = paradigmReg
+ m.origScript = origScript
+ m.regGroupDist = regGroupDist
+ }
+}
+
+func isParadigmLocale(lang langID, r regionID) bool {
+ for _, e := range paradigmLocales {
+ if langID(e[0]) == lang && (r == regionID(e[1]) || r == regionID(e[2])) {
+ return true
+ }
+ }
+ return false
+}
+
+// regionGroupDist computes the distance between two regions based on their
+// CLDR grouping.
+func regionGroupDist(a, b regionID, script scriptID, lang langID) (dist uint8, same bool) {
+ const defaultDistance = 4
+
+ aGroup := uint(regionToGroups[a]) << 1
+ bGroup := uint(regionToGroups[b]) << 1
+ for _, ri := range matchRegion {
+ if langID(ri.lang) == lang && (ri.script == 0 || scriptID(ri.script) == script) {
+ group := uint(1 << (ri.group &^ 0x80))
+ if 0x80&ri.group == 0 {
+ if aGroup&bGroup&group != 0 { // Both regions are in the group.
+ return ri.distance, ri.distance == defaultDistance
+ }
+ } else {
+ if (aGroup|bGroup)&group == 0 { // Both regions are not in the group.
+ return ri.distance, ri.distance == defaultDistance
+ }
+ }
+ }
+ }
+ return defaultDistance, true
+}
+
+func (t Tag) variants() string {
+ if t.pVariant == 0 {
+ return ""
+ }
+ return t.str[t.pVariant:t.pExt]
+}
+
+// variantOrPrivateTagStr returns variants or private use tags.
+func (t Tag) variantOrPrivateTagStr() string {
+ if t.pExt > 0 {
+ return t.str[t.pVariant:t.pExt]
+ }
+ return t.str[t.pVariant:]
+}
+
+// equalsRest compares everything except the language.
+func (a Tag) equalsRest(b Tag) bool {
+ // TODO: don't include extensions in this comparison. To do this efficiently,
+ // though, we should handle private tags separately.
+ return a.script == b.script && a.region == b.region && a.variantOrPrivateTagStr() == b.variantOrPrivateTagStr()
+}
+
+// isExactEquivalent returns true if canonicalizing the language will not alter
+// the script or region of a tag.
+func isExactEquivalent(l langID) bool {
+ for _, o := range notEquivalent {
+ if o == l {
+ return false
+ }
+ }
+ return true
+}
+
+var notEquivalent []langID
+
+func init() {
+ // Create a list of all languages for which canonicalization may alter the
+ // script or region.
+ for _, lm := range langAliasMap {
+ tag := Tag{lang: langID(lm.from)}
+ if tag, _ = tag.canonicalize(All); tag.script != 0 || tag.region != 0 {
+ notEquivalent = append(notEquivalent, langID(lm.from))
+ }
+ }
+ // Maximize undefined regions of paradigm locales.
+ for i, v := range paradigmLocales {
+ max, _ := addTags(Tag{lang: langID(v[0])})
+ if v[1] == 0 {
+ paradigmLocales[i][1] = uint16(max.region)
+ }
+ if v[2] == 0 {
+ paradigmLocales[i][2] = uint16(max.region)
+ }
+ }
+}