summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/text/internal/export/idna/gen.go
blob: 4ad98046f0d7705bad76a45f84c7bb62a159b006 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build ignore

// This program generates the trie for idna operations. The Unicode casing
// algorithm requires the lookup of various properties and mappings for each
// rune. The table generated by this generator combines several of the most
// frequently used of these into a single trie so that they can be accessed
// with a single lookup.
package main

import (
	"fmt"
	"io"
	"log"
	"unicode"
	"unicode/utf8"

	"golang.org/x/text/internal/gen"
	"golang.org/x/text/internal/triegen"
	"golang.org/x/text/internal/ucd"
	"golang.org/x/text/unicode/bidi"
)

func main() {
	gen.Init()
	genTables()
	gen.Repackage("gen_trieval.go", "trieval.go", "idna")
	gen.Repackage("gen_common.go", "common_test.go", "idna")
}

var runes = map[rune]info{}

func genTables() {
	t := triegen.NewTrie("idna")

	ucd.Parse(gen.OpenUCDFile("DerivedNormalizationProps.txt"), func(p *ucd.Parser) {
		r := p.Rune(0)
		if p.String(1) == "NFC_QC" { // p.String(2) is "N" or "M"
			runes[r] = mayNeedNorm
		}
	})
	ucd.Parse(gen.OpenUCDFile("UnicodeData.txt"), func(p *ucd.Parser) {
		r := p.Rune(0)

		const cccVirama = 9
		if p.Int(ucd.CanonicalCombiningClass) == cccVirama {
			runes[p.Rune(0)] = viramaModifier
		}
		switch {
		case unicode.In(r, unicode.Mark):
			runes[r] |= modifier | mayNeedNorm
		}
		// TODO: by using UnicodeData.txt we don't mark undefined codepoints
		// that are earmarked as RTL properly. However, an undefined cp will
		// always fail, so there is no need to store this info.
		switch p, _ := bidi.LookupRune(r); p.Class() {
		case bidi.R, bidi.AL, bidi.AN:
			if x := runes[r]; x != 0 && x != mayNeedNorm {
				log.Fatalf("%U: rune both modifier and RTL letter/number", r)
			}
			runes[r] = rtl
		}
	})

	ucd.Parse(gen.OpenUCDFile("extracted/DerivedJoiningType.txt"), func(p *ucd.Parser) {
		switch v := p.String(1); v {
		case "L", "D", "T", "R":
			runes[p.Rune(0)] |= joinType[v] << joinShift
		}
	})

	ucd.Parse(gen.OpenUnicodeFile("idna", "", "IdnaMappingTable.txt"), func(p *ucd.Parser) {
		r := p.Rune(0)

		// The mappings table explicitly defines surrogates as invalid.
		if !utf8.ValidRune(r) {
			return
		}

		cat := catFromEntry(p)
		isMapped := cat == mapped || cat == disallowedSTD3Mapped || cat == deviation
		if !isMapped {
			// Only include additional category information for non-mapped
			// runes. The additional information is only used after mapping and
			// the bits would clash with mapping information.
			// TODO: it would be possible to inline this data and avoid
			// additional lookups. This is quite tedious, though, so let's first
			// see if we need this.
			cat |= category(runes[r])
		}

		s := string(p.Runes(2))
		if s != "" && !isMapped {
			log.Fatalf("%U: Mapping with non-mapping category %d", r, cat)
		}
		t.Insert(r, uint64(makeEntry(r, s))+uint64(cat))
	})

	w := gen.NewCodeWriter()
	defer w.WriteVersionedGoFile("tables.go", "idna")

	gen.WriteUnicodeVersion(w)

	w.WriteVar("mappings", string(mappings))
	w.WriteVar("xorData", string(xorData))

	sz, err := t.Gen(w, triegen.Compact(&normCompacter{}))
	if err != nil {
		log.Fatal(err)
	}
	w.Size += sz
}

var (
	// mappings contains replacement strings for mapped runes, each prefixed
	// with a byte containing the length of the following string.
	mappings = []byte{}
	mapCache = map[string]int{}

	// xorData is like mappings, except that it contains XOR data.
	// We split these two tables so that we don't get an overflow.
	xorData  = []byte{}
	xorCache = map[string]int{}
)

// makeEntry creates a trie entry.
func makeEntry(r rune, mapped string) info {
	orig := string(r)

	if len(orig) != len(mapped) {
		// Store the mapped value as is in the mappings table.
		index := len(mappings)
		if x, ok := mapCache[mapped]; ok {
			index = x
		} else {
			mapCache[mapped] = index
			mappings = append(mappings, byte(len(mapped)))
			mappings = append(mappings, mapped...)
		}
		return info(index) << indexShift
	}

	// Create per-byte XOR mask.
	var b []byte
	for i := 0; i < len(orig); i++ {
		b = append(b, orig[i]^mapped[i])
	}

	// Remove leading 0 bytes, but keep at least one byte.
	for ; len(b) > 1 && b[0] == 0; b = b[1:] {
	}

	if len(b) == 1 {
		return xorBit | inlineXOR | info(b[0])<<indexShift
	}
	mapped = string(b)

	// Store the mapped value as is in the mappings table.
	index := len(xorData)
	if x, ok := xorCache[mapped]; ok {
		index = x
	} else {
		xorCache[mapped] = index
		xorData = append(xorData, byte(len(mapped)))
		xorData = append(xorData, mapped...)
	}
	return xorBit | info(index)<<indexShift
}

// The following code implements a triegen.Compacter that was originally
// designed for normalization. The IDNA table has some similarities with the
// norm table. Using this compacter, together with the XOR pattern approach,
// reduces the table size by roughly 100K. It can probably be compressed further
// by also including elements of the compacter used by cases, but for now it is
// good enough.

const maxSparseEntries = 16

type normCompacter struct {
	sparseBlocks [][]uint64
	sparseOffset []uint16
	sparseCount  int
}

func mostFrequentStride(a []uint64) int {
	counts := make(map[int]int)
	var v int
	for _, x := range a {
		if stride := int(x) - v; v != 0 && stride >= 0 {
			counts[stride]++
		}
		v = int(x)
	}
	var maxs, maxc int
	for stride, cnt := range counts {
		if cnt > maxc || (cnt == maxc && stride < maxs) {
			maxs, maxc = stride, cnt
		}
	}
	return maxs
}

func countSparseEntries(a []uint64) int {
	stride := mostFrequentStride(a)
	var v, count int
	for _, tv := range a {
		if int(tv)-v != stride {
			if tv != 0 {
				count++
			}
		}
		v = int(tv)
	}
	return count
}

func (c *normCompacter) Size(v []uint64) (sz int, ok bool) {
	if n := countSparseEntries(v); n <= maxSparseEntries {
		return (n+1)*4 + 2, true
	}
	return 0, false
}

func (c *normCompacter) Store(v []uint64) uint32 {
	h := uint32(len(c.sparseOffset))
	c.sparseBlocks = append(c.sparseBlocks, v)
	c.sparseOffset = append(c.sparseOffset, uint16(c.sparseCount))
	c.sparseCount += countSparseEntries(v) + 1
	return h
}

func (c *normCompacter) Handler() string {
	return "idnaSparse.lookup"
}

func (c *normCompacter) Print(w io.Writer) (retErr error) {
	p := func(f string, x ...interface{}) {
		if _, err := fmt.Fprintf(w, f, x...); retErr == nil && err != nil {
			retErr = err
		}
	}

	ls := len(c.sparseBlocks)
	p("// idnaSparseOffset: %d entries, %d bytes\n", ls, ls*2)
	p("var idnaSparseOffset = %#v\n\n", c.sparseOffset)

	ns := c.sparseCount
	p("// idnaSparseValues: %d entries, %d bytes\n", ns, ns*4)
	p("var idnaSparseValues = [%d]valueRange {", ns)
	for i, b := range c.sparseBlocks {
		p("\n// Block %#x, offset %#x", i, c.sparseOffset[i])
		var v int
		stride := mostFrequentStride(b)
		n := countSparseEntries(b)
		p("\n{value:%#04x,lo:%#02x},", stride, uint8(n))
		for i, nv := range b {
			if int(nv)-v != stride {
				if v != 0 {
					p(",hi:%#02x},", 0x80+i-1)
				}
				if nv != 0 {
					p("\n{value:%#04x,lo:%#02x", nv, 0x80+i)
				}
			}
			v = int(nv)
		}
		if v != 0 {
			p(",hi:%#02x},", 0x80+len(b)-1)
		}
	}
	p("\n}\n\n")
	return
}