summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/text/internal/number/decimal.go
blob: 9b4035ec4d03f60385b8c4877cbcbda005688d1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:generate stringer -type RoundingMode

package number

import (
	"math"
	"strconv"
)

// RoundingMode determines how a number is rounded to the desired precision.
type RoundingMode byte

const (
	ToNearestEven RoundingMode = iota // towards the nearest integer, or towards an even number if equidistant.
	ToNearestZero                     // towards the nearest integer, or towards zero if equidistant.
	ToNearestAway                     // towards the nearest integer, or away from zero if equidistant.
	ToPositiveInf                     // towards infinity
	ToNegativeInf                     // towards negative infinity
	ToZero                            // towards zero
	AwayFromZero                      // away from zero
	numModes
)

const maxIntDigits = 20

// A Decimal represents a floating point number in decimal format.
// Digits represents a number [0, 1.0), and the absolute value represented by
// Decimal is Digits * 10^Exp. Leading and trailing zeros may be omitted and Exp
// may point outside a valid position in Digits.
//
// Examples:
//      Number     Decimal
//      12345      Digits: [1, 2, 3, 4, 5], Exp: 5
//      12.345     Digits: [1, 2, 3, 4, 5], Exp: 2
//      12000      Digits: [1, 2],          Exp: 5
//      12000.00   Digits: [1, 2],          Exp: 5
//      0.00123    Digits: [1, 2, 3],       Exp: -2
//      0          Digits: [],              Exp: 0
type Decimal struct {
	digits

	buf [maxIntDigits]byte
}

type digits struct {
	Digits []byte // mantissa digits, big-endian
	Exp    int32  // exponent
	Neg    bool
	Inf    bool // Takes precedence over Digits and Exp.
	NaN    bool // Takes precedence over Inf.
}

// Digits represents a floating point number represented in digits of the
// base in which a number is to be displayed. It is similar to Decimal, but
// keeps track of trailing fraction zeros and the comma placement for
// engineering notation. Digits must have at least one digit.
//
// Examples:
//      Number     Decimal
//    decimal
//      12345      Digits: [1, 2, 3, 4, 5], Exp: 5  End: 5
//      12.345     Digits: [1, 2, 3, 4, 5], Exp: 2  End: 5
//      12000      Digits: [1, 2],          Exp: 5  End: 5
//      12000.00   Digits: [1, 2],          Exp: 5  End: 7
//      0.00123    Digits: [1, 2, 3],       Exp: -2 End: 3
//      0          Digits: [],              Exp: 0  End: 1
//    scientific (actual exp is Exp - Comma)
//      0e0        Digits: [0],             Exp: 1, End: 1, Comma: 1
//      .0e0       Digits: [0],             Exp: 0, End: 1, Comma: 0
//      0.0e0      Digits: [0],             Exp: 1, End: 2, Comma: 1
//      1.23e4     Digits: [1, 2, 3],       Exp: 5, End: 3, Comma: 1
//      .123e5     Digits: [1, 2, 3],       Exp: 5, End: 3, Comma: 0
//    engineering
//      12.3e3     Digits: [1, 2, 3],       Exp: 5, End: 3, Comma: 2
type Digits struct {
	digits
	// End indicates the end position of the number.
	End int32 // For decimals Exp <= End. For scientific len(Digits) <= End.
	// Comma is used for the comma position for scientific (always 0 or 1) and
	// engineering notation (always 0, 1, 2, or 3).
	Comma uint8
	// IsScientific indicates whether this number is to be rendered as a
	// scientific number.
	IsScientific bool
}

func (d *Digits) NumFracDigits() int {
	if d.Exp >= d.End {
		return 0
	}
	return int(d.End - d.Exp)
}

// normalize returns a new Decimal with leading and trailing zeros removed.
func (d *Decimal) normalize() (n Decimal) {
	n = *d
	b := n.Digits
	// Strip leading zeros. Resulting number of digits is significant digits.
	for len(b) > 0 && b[0] == 0 {
		b = b[1:]
		n.Exp--
	}
	// Strip trailing zeros
	for len(b) > 0 && b[len(b)-1] == 0 {
		b = b[:len(b)-1]
	}
	if len(b) == 0 {
		n.Exp = 0
	}
	n.Digits = b
	return n
}

func (d *Decimal) clear() {
	b := d.Digits
	if b == nil {
		b = d.buf[:0]
	}
	*d = Decimal{}
	d.Digits = b[:0]
}

func (x *Decimal) String() string {
	if x.NaN {
		return "NaN"
	}
	var buf []byte
	if x.Neg {
		buf = append(buf, '-')
	}
	if x.Inf {
		buf = append(buf, "Inf"...)
		return string(buf)
	}
	switch {
	case len(x.Digits) == 0:
		buf = append(buf, '0')
	case x.Exp <= 0:
		// 0.00ddd
		buf = append(buf, "0."...)
		buf = appendZeros(buf, -int(x.Exp))
		buf = appendDigits(buf, x.Digits)

	case /* 0 < */ int(x.Exp) < len(x.Digits):
		// dd.ddd
		buf = appendDigits(buf, x.Digits[:x.Exp])
		buf = append(buf, '.')
		buf = appendDigits(buf, x.Digits[x.Exp:])

	default: // len(x.Digits) <= x.Exp
		// ddd00
		buf = appendDigits(buf, x.Digits)
		buf = appendZeros(buf, int(x.Exp)-len(x.Digits))
	}
	return string(buf)
}

func appendDigits(buf []byte, digits []byte) []byte {
	for _, c := range digits {
		buf = append(buf, c+'0')
	}
	return buf
}

// appendZeros appends n 0 digits to buf and returns buf.
func appendZeros(buf []byte, n int) []byte {
	for ; n > 0; n-- {
		buf = append(buf, '0')
	}
	return buf
}

func (d *digits) round(mode RoundingMode, n int) {
	if n >= len(d.Digits) {
		return
	}
	// Make rounding decision: The result mantissa is truncated ("rounded down")
	// by default. Decide if we need to increment, or "round up", the (unsigned)
	// mantissa.
	inc := false
	switch mode {
	case ToNegativeInf:
		inc = d.Neg
	case ToPositiveInf:
		inc = !d.Neg
	case ToZero:
		// nothing to do
	case AwayFromZero:
		inc = true
	case ToNearestEven:
		inc = d.Digits[n] > 5 || d.Digits[n] == 5 &&
			(len(d.Digits) > n+1 || n == 0 || d.Digits[n-1]&1 != 0)
	case ToNearestAway:
		inc = d.Digits[n] >= 5
	case ToNearestZero:
		inc = d.Digits[n] > 5 || d.Digits[n] == 5 && len(d.Digits) > n+1
	default:
		panic("unreachable")
	}
	if inc {
		d.roundUp(n)
	} else {
		d.roundDown(n)
	}
}

// roundFloat rounds a floating point number.
func (r RoundingMode) roundFloat(x float64) float64 {
	// Make rounding decision: The result mantissa is truncated ("rounded down")
	// by default. Decide if we need to increment, or "round up", the (unsigned)
	// mantissa.
	abs := x
	if x < 0 {
		abs = -x
	}
	i, f := math.Modf(abs)
	if f == 0.0 {
		return x
	}
	inc := false
	switch r {
	case ToNegativeInf:
		inc = x < 0
	case ToPositiveInf:
		inc = x >= 0
	case ToZero:
		// nothing to do
	case AwayFromZero:
		inc = true
	case ToNearestEven:
		// TODO: check overflow
		inc = f > 0.5 || f == 0.5 && int64(i)&1 != 0
	case ToNearestAway:
		inc = f >= 0.5
	case ToNearestZero:
		inc = f > 0.5
	default:
		panic("unreachable")
	}
	if inc {
		i += 1
	}
	if abs != x {
		i = -i
	}
	return i
}

func (x *digits) roundUp(n int) {
	if n < 0 || n >= len(x.Digits) {
		return // nothing to do
	}
	// find first digit < 9
	for n > 0 && x.Digits[n-1] >= 9 {
		n--
	}

	if n == 0 {
		// all digits are 9s => round up to 1 and update exponent
		x.Digits[0] = 1 // ok since len(x.Digits) > n
		x.Digits = x.Digits[:1]
		x.Exp++
		return
	}
	x.Digits[n-1]++
	x.Digits = x.Digits[:n]
	// x already trimmed
}

func (x *digits) roundDown(n int) {
	if n < 0 || n >= len(x.Digits) {
		return // nothing to do
	}
	x.Digits = x.Digits[:n]
	trim(x)
}

// trim cuts off any trailing zeros from x's mantissa;
// they are meaningless for the value of x.
func trim(x *digits) {
	i := len(x.Digits)
	for i > 0 && x.Digits[i-1] == 0 {
		i--
	}
	x.Digits = x.Digits[:i]
	if i == 0 {
		x.Exp = 0
	}
}

// A Converter converts a number into decimals according to the given rounding
// criteria.
type Converter interface {
	Convert(d *Decimal, r RoundingContext)
}

const (
	signed   = true
	unsigned = false
)

// Convert converts the given number to the decimal representation using the
// supplied RoundingContext.
func (d *Decimal) Convert(r RoundingContext, number interface{}) {
	switch f := number.(type) {
	case Converter:
		d.clear()
		f.Convert(d, r)
	case float32:
		d.ConvertFloat(r, float64(f), 32)
	case float64:
		d.ConvertFloat(r, f, 64)
	case int:
		d.ConvertInt(r, signed, uint64(f))
	case int8:
		d.ConvertInt(r, signed, uint64(f))
	case int16:
		d.ConvertInt(r, signed, uint64(f))
	case int32:
		d.ConvertInt(r, signed, uint64(f))
	case int64:
		d.ConvertInt(r, signed, uint64(f))
	case uint:
		d.ConvertInt(r, unsigned, uint64(f))
	case uint8:
		d.ConvertInt(r, unsigned, uint64(f))
	case uint16:
		d.ConvertInt(r, unsigned, uint64(f))
	case uint32:
		d.ConvertInt(r, unsigned, uint64(f))
	case uint64:
		d.ConvertInt(r, unsigned, f)

	default:
		d.NaN = true
		// TODO:
		// case string: if produced by strconv, allows for easy arbitrary pos.
		// case reflect.Value:
		// case big.Float
		// case big.Int
		// case big.Rat?
		// catch underlyings using reflect or will this already be done by the
		//    message package?
	}
}

// ConvertInt converts an integer to decimals.
func (d *Decimal) ConvertInt(r RoundingContext, signed bool, x uint64) {
	if r.Increment > 0 {
		// TODO: if uint64 is too large, fall back to float64
		if signed {
			d.ConvertFloat(r, float64(int64(x)), 64)
		} else {
			d.ConvertFloat(r, float64(x), 64)
		}
		return
	}
	d.clear()
	if signed && int64(x) < 0 {
		x = uint64(-int64(x))
		d.Neg = true
	}
	d.fillIntDigits(x)
	d.Exp = int32(len(d.Digits))
}

// ConvertFloat converts a floating point number to decimals.
func (d *Decimal) ConvertFloat(r RoundingContext, x float64, size int) {
	d.clear()
	if math.IsNaN(x) {
		d.NaN = true
		return
	}
	// Simple case: decimal notation
	if r.Increment > 0 {
		scale := int(r.IncrementScale)
		mult := 1.0
		if scale > len(scales) {
			mult = math.Pow(10, float64(scale))
		} else {
			mult = scales[scale]
		}
		// We multiply x instead of dividing inc as it gives less rounding
		// issues.
		x *= mult
		x /= float64(r.Increment)
		x = r.Mode.roundFloat(x)
		x *= float64(r.Increment)
		x /= mult
	}

	abs := x
	if x < 0 {
		d.Neg = true
		abs = -x
	}
	if math.IsInf(abs, 1) {
		d.Inf = true
		return
	}

	// By default we get the exact decimal representation.
	verb := byte('g')
	prec := -1
	// As the strconv API does not return the rounding accuracy, we can only
	// round using ToNearestEven.
	if r.Mode == ToNearestEven {
		if n := r.RoundSignificantDigits(); n >= 0 {
			prec = n
		} else if n = r.RoundFractionDigits(); n >= 0 {
			prec = n
			verb = 'f'
		}
	} else {
		// TODO: At this point strconv's rounding is imprecise to the point that
		// it is not useable for this purpose.
		// See https://github.com/golang/go/issues/21714
		// If rounding is requested, we ask for a large number of digits and
		// round from there to simulate rounding only once.
		// Ideally we would have strconv export an AppendDigits that would take
		// a rounding mode and/or return an accuracy. Something like this would
		// work:
		// AppendDigits(dst []byte, x float64, base, size, prec int) (digits []byte, exp, accuracy int)
		hasPrec := r.RoundSignificantDigits() >= 0
		hasScale := r.RoundFractionDigits() >= 0
		if hasPrec || hasScale {
			// prec is the number of mantissa bits plus some extra for safety.
			// We need at least the number of mantissa bits as decimals to
			// accurately represent the floating point without rounding, as each
			// bit requires one more decimal to represent: 0.5, 0.25, 0.125, ...
			prec = 60
		}
	}

	b := strconv.AppendFloat(d.Digits[:0], abs, verb, prec, size)
	i := 0
	k := 0
	beforeDot := 1
	for i < len(b) {
		if c := b[i]; '0' <= c && c <= '9' {
			b[k] = c - '0'
			k++
			d.Exp += int32(beforeDot)
		} else if c == '.' {
			beforeDot = 0
			d.Exp = int32(k)
		} else {
			break
		}
		i++
	}
	d.Digits = b[:k]
	if i != len(b) {
		i += len("e")
		pSign := i
		exp := 0
		for i++; i < len(b); i++ {
			exp *= 10
			exp += int(b[i] - '0')
		}
		if b[pSign] == '-' {
			exp = -exp
		}
		d.Exp = int32(exp) + 1
	}
}

func (d *Decimal) fillIntDigits(x uint64) {
	if cap(d.Digits) < maxIntDigits {
		d.Digits = d.buf[:]
	} else {
		d.Digits = d.buf[:maxIntDigits]
	}
	i := 0
	for ; x > 0; x /= 10 {
		d.Digits[i] = byte(x % 10)
		i++
	}
	d.Digits = d.Digits[:i]
	for p := 0; p < i; p++ {
		i--
		d.Digits[p], d.Digits[i] = d.Digits[i], d.Digits[p]
	}
}

var scales [70]float64

func init() {
	x := 1.0
	for i := range scales {
		scales[i] = x
		x *= 10
	}
}