summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/text/internal/number/format.go
blob: 910bdeb02b14b4ddfa95c633ddb0755e40ff563b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package number

import (
	"strconv"
	"unicode/utf8"

	"golang.org/x/text/language"
)

// TODO:
// - grouping of fractions
// - allow user-defined superscript notation (such as <sup>4</sup>)
// - same for non-breaking spaces, like &nbsp;

// A VisibleDigits computes digits, comma placement and trailing zeros as they
// will be shown to the user.
type VisibleDigits interface {
	Digits(buf []byte, t language.Tag, scale int) Digits
	// TODO: Do we also need to add the verb or pass a format.State?
}

// Formatting proceeds along the following lines:
// 0) Compose rounding information from format and context.
// 1) Convert a number into a Decimal.
// 2) Sanitize Decimal by adding trailing zeros, removing leading digits, and
//    (non-increment) rounding. The Decimal that results from this is suitable
//    for determining the plural form.
// 3) Render the Decimal in the localized form.

// Formatter contains all the information needed to render a number.
type Formatter struct {
	Pattern
	Info
}

func (f *Formatter) init(t language.Tag, index []uint8) {
	f.Info = InfoFromTag(t)
	for ; ; t = t.Parent() {
		if ci, ok := language.CompactIndex(t); ok {
			f.Pattern = formats[index[ci]]
			break
		}
	}
}

// InitPattern initializes a Formatter for the given Pattern.
func (f *Formatter) InitPattern(t language.Tag, pat *Pattern) {
	f.Info = InfoFromTag(t)
	f.Pattern = *pat
}

// InitDecimal initializes a Formatter using the default Pattern for the given
// language.
func (f *Formatter) InitDecimal(t language.Tag) {
	f.init(t, tagToDecimal)
}

// InitScientific initializes a Formatter using the default Pattern for the
// given language.
func (f *Formatter) InitScientific(t language.Tag) {
	f.init(t, tagToScientific)
	f.Pattern.MinFractionDigits = 0
	f.Pattern.MaxFractionDigits = -1
}

// InitEngineering initializes a Formatter using the default Pattern for the
// given language.
func (f *Formatter) InitEngineering(t language.Tag) {
	f.init(t, tagToScientific)
	f.Pattern.MinFractionDigits = 0
	f.Pattern.MaxFractionDigits = -1
	f.Pattern.MaxIntegerDigits = 3
	f.Pattern.MinIntegerDigits = 1
}

// InitPercent initializes a Formatter using the default Pattern for the given
// language.
func (f *Formatter) InitPercent(t language.Tag) {
	f.init(t, tagToPercent)
}

// InitPerMille initializes a Formatter using the default Pattern for the given
// language.
func (f *Formatter) InitPerMille(t language.Tag) {
	f.init(t, tagToPercent)
	f.Pattern.DigitShift = 3
}

func (f *Formatter) Append(dst []byte, x interface{}) []byte {
	var d Decimal
	r := f.RoundingContext
	d.Convert(r, x)
	return f.Render(dst, FormatDigits(&d, r))
}

func FormatDigits(d *Decimal, r RoundingContext) Digits {
	if r.isScientific() {
		return scientificVisibleDigits(r, d)
	}
	return decimalVisibleDigits(r, d)
}

func (f *Formatter) Format(dst []byte, d *Decimal) []byte {
	return f.Render(dst, FormatDigits(d, f.RoundingContext))
}

func (f *Formatter) Render(dst []byte, d Digits) []byte {
	var result []byte
	var postPrefix, preSuffix int
	if d.IsScientific {
		result, postPrefix, preSuffix = appendScientific(dst, f, &d)
	} else {
		result, postPrefix, preSuffix = appendDecimal(dst, f, &d)
	}
	if f.PadRune == 0 {
		return result
	}
	width := int(f.FormatWidth)
	if count := utf8.RuneCount(result); count < width {
		insertPos := 0
		switch f.Flags & PadMask {
		case PadAfterPrefix:
			insertPos = postPrefix
		case PadBeforeSuffix:
			insertPos = preSuffix
		case PadAfterSuffix:
			insertPos = len(result)
		}
		num := width - count
		pad := [utf8.UTFMax]byte{' '}
		sz := 1
		if r := f.PadRune; r != 0 {
			sz = utf8.EncodeRune(pad[:], r)
		}
		extra := sz * num
		if n := len(result) + extra; n < cap(result) {
			result = result[:n]
			copy(result[insertPos+extra:], result[insertPos:])
		} else {
			buf := make([]byte, n)
			copy(buf, result[:insertPos])
			copy(buf[insertPos+extra:], result[insertPos:])
			result = buf
		}
		for ; num > 0; num-- {
			insertPos += copy(result[insertPos:], pad[:sz])
		}
	}
	return result
}

// decimalVisibleDigits converts d according to the RoundingContext. Note that
// the exponent may change as a result of this operation.
func decimalVisibleDigits(r RoundingContext, d *Decimal) Digits {
	if d.NaN || d.Inf {
		return Digits{digits: digits{Neg: d.Neg, NaN: d.NaN, Inf: d.Inf}}
	}
	n := Digits{digits: d.normalize().digits}

	exp := n.Exp
	exp += int32(r.DigitShift)

	// Cap integer digits. Remove *most-significant* digits.
	if r.MaxIntegerDigits > 0 {
		if p := int(exp) - int(r.MaxIntegerDigits); p > 0 {
			if p > len(n.Digits) {
				p = len(n.Digits)
			}
			if n.Digits = n.Digits[p:]; len(n.Digits) == 0 {
				exp = 0
			} else {
				exp -= int32(p)
			}
			// Strip leading zeros.
			for len(n.Digits) > 0 && n.Digits[0] == 0 {
				n.Digits = n.Digits[1:]
				exp--
			}
		}
	}

	// Rounding if not already done by Convert.
	p := len(n.Digits)
	if maxSig := int(r.MaxSignificantDigits); maxSig > 0 {
		p = maxSig
	}
	if maxFrac := int(r.MaxFractionDigits); maxFrac >= 0 {
		if cap := int(exp) + maxFrac; cap < p {
			p = int(exp) + maxFrac
		}
		if p < 0 {
			p = 0
		}
	}
	n.round(r.Mode, p)

	// set End (trailing zeros)
	n.End = int32(len(n.Digits))
	if n.End == 0 {
		exp = 0
		if r.MinFractionDigits > 0 {
			n.End = int32(r.MinFractionDigits)
		}
		if p := int32(r.MinSignificantDigits) - 1; p > n.End {
			n.End = p
		}
	} else {
		if end := exp + int32(r.MinFractionDigits); end > n.End {
			n.End = end
		}
		if n.End < int32(r.MinSignificantDigits) {
			n.End = int32(r.MinSignificantDigits)
		}
	}
	n.Exp = exp
	return n
}

// appendDecimal appends a formatted number to dst. It returns two possible
// insertion points for padding.
func appendDecimal(dst []byte, f *Formatter, n *Digits) (b []byte, postPre, preSuf int) {
	if dst, ok := f.renderSpecial(dst, n); ok {
		return dst, 0, len(dst)
	}
	digits := n.Digits
	exp := n.Exp

	// Split in integer and fraction part.
	var intDigits, fracDigits []byte
	numInt := 0
	numFrac := int(n.End - n.Exp)
	if exp > 0 {
		numInt = int(exp)
		if int(exp) >= len(digits) { // ddddd | ddddd00
			intDigits = digits
		} else { // ddd.dd
			intDigits = digits[:exp]
			fracDigits = digits[exp:]
		}
	} else {
		fracDigits = digits
	}

	neg := n.Neg
	affix, suffix := f.getAffixes(neg)
	dst = appendAffix(dst, f, affix, neg)
	savedLen := len(dst)

	minInt := int(f.MinIntegerDigits)
	if minInt == 0 && f.MinSignificantDigits > 0 {
		minInt = 1
	}
	// add leading zeros
	for i := minInt; i > numInt; i-- {
		dst = f.AppendDigit(dst, 0)
		if f.needsSep(i) {
			dst = append(dst, f.Symbol(SymGroup)...)
		}
	}
	i := 0
	for ; i < len(intDigits); i++ {
		dst = f.AppendDigit(dst, intDigits[i])
		if f.needsSep(numInt - i) {
			dst = append(dst, f.Symbol(SymGroup)...)
		}
	}
	for ; i < numInt; i++ {
		dst = f.AppendDigit(dst, 0)
		if f.needsSep(numInt - i) {
			dst = append(dst, f.Symbol(SymGroup)...)
		}
	}

	if numFrac > 0 || f.Flags&AlwaysDecimalSeparator != 0 {
		dst = append(dst, f.Symbol(SymDecimal)...)
	}
	// Add trailing zeros
	i = 0
	for n := -int(n.Exp); i < n; i++ {
		dst = f.AppendDigit(dst, 0)
	}
	for _, d := range fracDigits {
		i++
		dst = f.AppendDigit(dst, d)
	}
	for ; i < numFrac; i++ {
		dst = f.AppendDigit(dst, 0)
	}
	return appendAffix(dst, f, suffix, neg), savedLen, len(dst)
}

func scientificVisibleDigits(r RoundingContext, d *Decimal) Digits {
	if d.NaN || d.Inf {
		return Digits{digits: digits{Neg: d.Neg, NaN: d.NaN, Inf: d.Inf}}
	}
	n := Digits{digits: d.normalize().digits, IsScientific: true}

	// Normalize to have at least one digit. This simplifies engineering
	// notation.
	if len(n.Digits) == 0 {
		n.Digits = append(n.Digits, 0)
		n.Exp = 1
	}

	// Significant digits are transformed by the parser for scientific notation
	// and do not need to be handled here.
	maxInt, numInt := int(r.MaxIntegerDigits), int(r.MinIntegerDigits)
	if numInt == 0 {
		numInt = 1
	}

	// If a maximum number of integers is specified, the minimum must be 1
	// and the exponent is grouped by this number (e.g. for engineering)
	if maxInt > numInt {
		// Correct the exponent to reflect a single integer digit.
		numInt = 1
		// engineering
		// 0.01234 ([12345]e-1) -> 1.2345e-2  12.345e-3
		// 12345   ([12345]e+5) -> 1.2345e4  12.345e3
		d := int(n.Exp-1) % maxInt
		if d < 0 {
			d += maxInt
		}
		numInt += d
	}

	p := len(n.Digits)
	if maxSig := int(r.MaxSignificantDigits); maxSig > 0 {
		p = maxSig
	}
	if maxFrac := int(r.MaxFractionDigits); maxFrac >= 0 && numInt+maxFrac < p {
		p = numInt + maxFrac
	}
	n.round(r.Mode, p)

	n.Comma = uint8(numInt)
	n.End = int32(len(n.Digits))
	if minSig := int32(r.MinFractionDigits) + int32(numInt); n.End < minSig {
		n.End = minSig
	}
	return n
}

// appendScientific appends a formatted number to dst. It returns two possible
// insertion points for padding.
func appendScientific(dst []byte, f *Formatter, n *Digits) (b []byte, postPre, preSuf int) {
	if dst, ok := f.renderSpecial(dst, n); ok {
		return dst, 0, 0
	}
	digits := n.Digits
	numInt := int(n.Comma)
	numFrac := int(n.End) - int(n.Comma)

	var intDigits, fracDigits []byte
	if numInt <= len(digits) {
		intDigits = digits[:numInt]
		fracDigits = digits[numInt:]
	} else {
		intDigits = digits
	}
	neg := n.Neg
	affix, suffix := f.getAffixes(neg)
	dst = appendAffix(dst, f, affix, neg)
	savedLen := len(dst)

	i := 0
	for ; i < len(intDigits); i++ {
		dst = f.AppendDigit(dst, intDigits[i])
		if f.needsSep(numInt - i) {
			dst = append(dst, f.Symbol(SymGroup)...)
		}
	}
	for ; i < numInt; i++ {
		dst = f.AppendDigit(dst, 0)
		if f.needsSep(numInt - i) {
			dst = append(dst, f.Symbol(SymGroup)...)
		}
	}

	if numFrac > 0 || f.Flags&AlwaysDecimalSeparator != 0 {
		dst = append(dst, f.Symbol(SymDecimal)...)
	}
	i = 0
	for ; i < len(fracDigits); i++ {
		dst = f.AppendDigit(dst, fracDigits[i])
	}
	for ; i < numFrac; i++ {
		dst = f.AppendDigit(dst, 0)
	}

	// exp
	buf := [12]byte{}
	// TODO: use exponential if superscripting is not available (no Latin
	// numbers or no tags) and use exponential in all other cases.
	exp := n.Exp - int32(n.Comma)
	exponential := f.Symbol(SymExponential)
	if exponential == "E" {
		dst = append(dst, "\u202f"...) // NARROW NO-BREAK SPACE
		dst = append(dst, f.Symbol(SymSuperscriptingExponent)...)
		dst = append(dst, "\u202f"...) // NARROW NO-BREAK SPACE
		dst = f.AppendDigit(dst, 1)
		dst = f.AppendDigit(dst, 0)
		switch {
		case exp < 0:
			dst = append(dst, superMinus...)
			exp = -exp
		case f.Flags&AlwaysExpSign != 0:
			dst = append(dst, superPlus...)
		}
		b = strconv.AppendUint(buf[:0], uint64(exp), 10)
		for i := len(b); i < int(f.MinExponentDigits); i++ {
			dst = append(dst, superDigits[0]...)
		}
		for _, c := range b {
			dst = append(dst, superDigits[c-'0']...)
		}
	} else {
		dst = append(dst, exponential...)
		switch {
		case exp < 0:
			dst = append(dst, f.Symbol(SymMinusSign)...)
			exp = -exp
		case f.Flags&AlwaysExpSign != 0:
			dst = append(dst, f.Symbol(SymPlusSign)...)
		}
		b = strconv.AppendUint(buf[:0], uint64(exp), 10)
		for i := len(b); i < int(f.MinExponentDigits); i++ {
			dst = f.AppendDigit(dst, 0)
		}
		for _, c := range b {
			dst = f.AppendDigit(dst, c-'0')
		}
	}
	return appendAffix(dst, f, suffix, neg), savedLen, len(dst)
}

const (
	superMinus = "\u207B" // SUPERSCRIPT HYPHEN-MINUS
	superPlus  = "\u207A" // SUPERSCRIPT PLUS SIGN
)

var (
	// Note: the digits are not sequential!!!
	superDigits = []string{
		"\u2070", // SUPERSCRIPT DIGIT ZERO
		"\u00B9", // SUPERSCRIPT DIGIT ONE
		"\u00B2", // SUPERSCRIPT DIGIT TWO
		"\u00B3", // SUPERSCRIPT DIGIT THREE
		"\u2074", // SUPERSCRIPT DIGIT FOUR
		"\u2075", // SUPERSCRIPT DIGIT FIVE
		"\u2076", // SUPERSCRIPT DIGIT SIX
		"\u2077", // SUPERSCRIPT DIGIT SEVEN
		"\u2078", // SUPERSCRIPT DIGIT EIGHT
		"\u2079", // SUPERSCRIPT DIGIT NINE
	}
)

func (f *Formatter) getAffixes(neg bool) (affix, suffix string) {
	str := f.Affix
	if str != "" {
		if f.NegOffset > 0 {
			if neg {
				str = str[f.NegOffset:]
			} else {
				str = str[:f.NegOffset]
			}
		}
		sufStart := 1 + str[0]
		affix = str[1:sufStart]
		suffix = str[sufStart+1:]
	}
	// TODO: introduce a NeedNeg sign to indicate if the left pattern already
	// has a sign marked?
	if f.NegOffset == 0 && (neg || f.Flags&AlwaysSign != 0) {
		affix = "-" + affix
	}
	return affix, suffix
}

func (f *Formatter) renderSpecial(dst []byte, d *Digits) (b []byte, ok bool) {
	if d.NaN {
		return fmtNaN(dst, f), true
	}
	if d.Inf {
		return fmtInfinite(dst, f, d), true
	}
	return dst, false
}

func fmtNaN(dst []byte, f *Formatter) []byte {
	return append(dst, f.Symbol(SymNan)...)
}

func fmtInfinite(dst []byte, f *Formatter, d *Digits) []byte {
	affix, suffix := f.getAffixes(d.Neg)
	dst = appendAffix(dst, f, affix, d.Neg)
	dst = append(dst, f.Symbol(SymInfinity)...)
	dst = appendAffix(dst, f, suffix, d.Neg)
	return dst
}

func appendAffix(dst []byte, f *Formatter, affix string, neg bool) []byte {
	quoting := false
	escaping := false
	for _, r := range affix {
		switch {
		case escaping:
			// escaping occurs both inside and outside of quotes
			dst = append(dst, string(r)...)
			escaping = false
		case r == '\\':
			escaping = true
		case r == '\'':
			quoting = !quoting
		case quoting:
			dst = append(dst, string(r)...)
		case r == '%':
			if f.DigitShift == 3 {
				dst = append(dst, f.Symbol(SymPerMille)...)
			} else {
				dst = append(dst, f.Symbol(SymPercentSign)...)
			}
		case r == '-' || r == '+':
			if neg {
				dst = append(dst, f.Symbol(SymMinusSign)...)
			} else if f.Flags&ElideSign == 0 {
				dst = append(dst, f.Symbol(SymPlusSign)...)
			} else {
				dst = append(dst, ' ')
			}
		default:
			dst = append(dst, string(r)...)
		}
	}
	return dst
}