summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/text/message/print.go
blob: 777e1724a010a23aeb52432225f5dd97448f9108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package message

import (
	"bytes"
	"fmt" // TODO: consider copying interfaces from package fmt to avoid dependency.
	"math"
	"reflect"
	"sync"
	"unicode/utf8"

	"golang.org/x/text/internal/format"
	"golang.org/x/text/internal/number"
	"golang.org/x/text/language"
	"golang.org/x/text/message/catalog"
)

// Strings for use with buffer.WriteString.
// This is less overhead than using buffer.Write with byte arrays.
const (
	commaSpaceString  = ", "
	nilAngleString    = "<nil>"
	nilParenString    = "(nil)"
	nilString         = "nil"
	mapString         = "map["
	percentBangString = "%!"
	missingString     = "(MISSING)"
	badIndexString    = "(BADINDEX)"
	panicString       = "(PANIC="
	extraString       = "%!(EXTRA "
	badWidthString    = "%!(BADWIDTH)"
	badPrecString     = "%!(BADPREC)"
	noVerbString      = "%!(NOVERB)"

	invReflectString = "<invalid reflect.Value>"
)

var printerPool = sync.Pool{
	New: func() interface{} { return new(printer) },
}

// newPrinter allocates a new printer struct or grabs a cached one.
func newPrinter(pp *Printer) *printer {
	p := printerPool.Get().(*printer)
	p.Printer = *pp
	// TODO: cache most of the following call.
	p.catContext = pp.cat.Context(pp.tag, p)

	p.panicking = false
	p.erroring = false
	p.fmt.init(&p.Buffer)
	return p
}

// free saves used printer structs in printerFree; avoids an allocation per invocation.
func (p *printer) free() {
	p.Buffer.Reset()
	p.arg = nil
	p.value = reflect.Value{}
	printerPool.Put(p)
}

// printer is used to store a printer's state.
// It implements "golang.org/x/text/internal/format".State.
type printer struct {
	Printer

	// the context for looking up message translations
	catContext *catalog.Context

	// buffer for accumulating output.
	bytes.Buffer

	// arg holds the current item, as an interface{}.
	arg interface{}
	// value is used instead of arg for reflect values.
	value reflect.Value

	// fmt is used to format basic items such as integers or strings.
	fmt formatInfo

	// panicking is set by catchPanic to avoid infinite panic, recover, panic, ... recursion.
	panicking bool
	// erroring is set when printing an error string to guard against calling handleMethods.
	erroring bool
}

// Language implements "golang.org/x/text/internal/format".State.
func (p *printer) Language() language.Tag { return p.tag }

func (p *printer) Width() (wid int, ok bool) { return p.fmt.Width, p.fmt.WidthPresent }

func (p *printer) Precision() (prec int, ok bool) { return p.fmt.Prec, p.fmt.PrecPresent }

func (p *printer) Flag(b int) bool {
	switch b {
	case '-':
		return p.fmt.Minus
	case '+':
		return p.fmt.Plus || p.fmt.PlusV
	case '#':
		return p.fmt.Sharp || p.fmt.SharpV
	case ' ':
		return p.fmt.Space
	case '0':
		return p.fmt.Zero
	}
	return false
}

// getField gets the i'th field of the struct value.
// If the field is itself is an interface, return a value for
// the thing inside the interface, not the interface itself.
func getField(v reflect.Value, i int) reflect.Value {
	val := v.Field(i)
	if val.Kind() == reflect.Interface && !val.IsNil() {
		val = val.Elem()
	}
	return val
}

func (p *printer) unknownType(v reflect.Value) {
	if !v.IsValid() {
		p.WriteString(nilAngleString)
		return
	}
	p.WriteByte('?')
	p.WriteString(v.Type().String())
	p.WriteByte('?')
}

func (p *printer) badVerb(verb rune) {
	p.erroring = true
	p.WriteString(percentBangString)
	p.WriteRune(verb)
	p.WriteByte('(')
	switch {
	case p.arg != nil:
		p.WriteString(reflect.TypeOf(p.arg).String())
		p.WriteByte('=')
		p.printArg(p.arg, 'v')
	case p.value.IsValid():
		p.WriteString(p.value.Type().String())
		p.WriteByte('=')
		p.printValue(p.value, 'v', 0)
	default:
		p.WriteString(nilAngleString)
	}
	p.WriteByte(')')
	p.erroring = false
}

func (p *printer) fmtBool(v bool, verb rune) {
	switch verb {
	case 't', 'v':
		p.fmt.fmt_boolean(v)
	default:
		p.badVerb(verb)
	}
}

// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
// not, as requested, by temporarily setting the sharp flag.
func (p *printer) fmt0x64(v uint64, leading0x bool) {
	sharp := p.fmt.Sharp
	p.fmt.Sharp = leading0x
	p.fmt.fmt_integer(v, 16, unsigned, ldigits)
	p.fmt.Sharp = sharp
}

// fmtInteger formats a signed or unsigned integer.
func (p *printer) fmtInteger(v uint64, isSigned bool, verb rune) {
	switch verb {
	case 'v':
		if p.fmt.SharpV && !isSigned {
			p.fmt0x64(v, true)
			return
		}
		fallthrough
	case 'd':
		if p.fmt.Sharp || p.fmt.SharpV {
			p.fmt.fmt_integer(v, 10, isSigned, ldigits)
		} else {
			p.fmtDecimalInt(v, isSigned)
		}
	case 'b':
		p.fmt.fmt_integer(v, 2, isSigned, ldigits)
	case 'o':
		p.fmt.fmt_integer(v, 8, isSigned, ldigits)
	case 'x':
		p.fmt.fmt_integer(v, 16, isSigned, ldigits)
	case 'X':
		p.fmt.fmt_integer(v, 16, isSigned, udigits)
	case 'c':
		p.fmt.fmt_c(v)
	case 'q':
		if v <= utf8.MaxRune {
			p.fmt.fmt_qc(v)
		} else {
			p.badVerb(verb)
		}
	case 'U':
		p.fmt.fmt_unicode(v)
	default:
		p.badVerb(verb)
	}
}

// fmtFloat formats a float. The default precision for each verb
// is specified as last argument in the call to fmt_float.
func (p *printer) fmtFloat(v float64, size int, verb rune) {
	switch verb {
	case 'b':
		p.fmt.fmt_float(v, size, verb, -1)
	case 'v':
		verb = 'g'
		fallthrough
	case 'g', 'G':
		if p.fmt.Sharp || p.fmt.SharpV {
			p.fmt.fmt_float(v, size, verb, -1)
		} else {
			p.fmtVariableFloat(v, size)
		}
	case 'e', 'E':
		if p.fmt.Sharp || p.fmt.SharpV {
			p.fmt.fmt_float(v, size, verb, 6)
		} else {
			p.fmtScientific(v, size, 6)
		}
	case 'f', 'F':
		if p.fmt.Sharp || p.fmt.SharpV {
			p.fmt.fmt_float(v, size, verb, 6)
		} else {
			p.fmtDecimalFloat(v, size, 6)
		}
	default:
		p.badVerb(verb)
	}
}

func (p *printer) setFlags(f *number.Formatter) {
	f.Flags &^= number.ElideSign
	if p.fmt.Plus || p.fmt.Space {
		f.Flags |= number.AlwaysSign
		if !p.fmt.Plus {
			f.Flags |= number.ElideSign
		}
	} else {
		f.Flags &^= number.AlwaysSign
	}
}

func (p *printer) updatePadding(f *number.Formatter) {
	f.Flags &^= number.PadMask
	if p.fmt.Minus {
		f.Flags |= number.PadAfterSuffix
	} else {
		f.Flags |= number.PadBeforePrefix
	}
	f.PadRune = ' '
	f.FormatWidth = uint16(p.fmt.Width)
}

func (p *printer) initDecimal(minFrac, maxFrac int) {
	f := &p.toDecimal
	f.MinIntegerDigits = 1
	f.MaxIntegerDigits = 0
	f.MinFractionDigits = uint8(minFrac)
	f.MaxFractionDigits = int16(maxFrac)
	p.setFlags(f)
	f.PadRune = 0
	if p.fmt.WidthPresent {
		if p.fmt.Zero {
			wid := p.fmt.Width
			// Use significant integers for this.
			// TODO: this is not the same as width, but so be it.
			if f.MinFractionDigits > 0 {
				wid -= 1 + int(f.MinFractionDigits)
			}
			if p.fmt.Plus || p.fmt.Space {
				wid--
			}
			if wid > 0 && wid > int(f.MinIntegerDigits) {
				f.MinIntegerDigits = uint8(wid)
			}
		}
		p.updatePadding(f)
	}
}

func (p *printer) initScientific(minFrac, maxFrac int) {
	f := &p.toScientific
	if maxFrac < 0 {
		f.SetPrecision(maxFrac)
	} else {
		f.SetPrecision(maxFrac + 1)
		f.MinFractionDigits = uint8(minFrac)
		f.MaxFractionDigits = int16(maxFrac)
	}
	f.MinExponentDigits = 2
	p.setFlags(f)
	f.PadRune = 0
	if p.fmt.WidthPresent {
		f.Flags &^= number.PadMask
		if p.fmt.Zero {
			f.PadRune = f.Digit(0)
			f.Flags |= number.PadAfterPrefix
		} else {
			f.PadRune = ' '
			f.Flags |= number.PadBeforePrefix
		}
		p.updatePadding(f)
	}
}

func (p *printer) fmtDecimalInt(v uint64, isSigned bool) {
	var d number.Decimal

	f := &p.toDecimal
	if p.fmt.PrecPresent {
		p.setFlags(f)
		f.MinIntegerDigits = uint8(p.fmt.Prec)
		f.MaxIntegerDigits = 0
		f.MinFractionDigits = 0
		f.MaxFractionDigits = 0
		if p.fmt.WidthPresent {
			p.updatePadding(f)
		}
	} else {
		p.initDecimal(0, 0)
	}
	d.ConvertInt(p.toDecimal.RoundingContext, isSigned, v)

	out := p.toDecimal.Format([]byte(nil), &d)
	p.Buffer.Write(out)
}

func (p *printer) fmtDecimalFloat(v float64, size, prec int) {
	var d number.Decimal
	if p.fmt.PrecPresent {
		prec = p.fmt.Prec
	}
	p.initDecimal(prec, prec)
	d.ConvertFloat(p.toDecimal.RoundingContext, v, size)

	out := p.toDecimal.Format([]byte(nil), &d)
	p.Buffer.Write(out)
}

func (p *printer) fmtVariableFloat(v float64, size int) {
	prec := -1
	if p.fmt.PrecPresent {
		prec = p.fmt.Prec
	}
	var d number.Decimal
	p.initScientific(0, prec)
	d.ConvertFloat(p.toScientific.RoundingContext, v, size)

	// Copy logic of 'g' formatting from strconv. It is simplified a bit as
	// we don't have to mind having prec > len(d.Digits).
	shortest := prec < 0
	ePrec := prec
	if shortest {
		prec = len(d.Digits)
		ePrec = 6
	} else if prec == 0 {
		prec = 1
		ePrec = 1
	}
	exp := int(d.Exp) - 1
	if exp < -4 || exp >= ePrec {
		p.initScientific(0, prec)

		out := p.toScientific.Format([]byte(nil), &d)
		p.Buffer.Write(out)
	} else {
		if prec > int(d.Exp) {
			prec = len(d.Digits)
		}
		if prec -= int(d.Exp); prec < 0 {
			prec = 0
		}
		p.initDecimal(0, prec)

		out := p.toDecimal.Format([]byte(nil), &d)
		p.Buffer.Write(out)
	}
}

func (p *printer) fmtScientific(v float64, size, prec int) {
	var d number.Decimal
	if p.fmt.PrecPresent {
		prec = p.fmt.Prec
	}
	p.initScientific(prec, prec)
	rc := p.toScientific.RoundingContext
	d.ConvertFloat(rc, v, size)

	out := p.toScientific.Format([]byte(nil), &d)
	p.Buffer.Write(out)

}

// fmtComplex formats a complex number v with
// r = real(v) and j = imag(v) as (r+ji) using
// fmtFloat for r and j formatting.
func (p *printer) fmtComplex(v complex128, size int, verb rune) {
	// Make sure any unsupported verbs are found before the
	// calls to fmtFloat to not generate an incorrect error string.
	switch verb {
	case 'v', 'b', 'g', 'G', 'f', 'F', 'e', 'E':
		p.WriteByte('(')
		p.fmtFloat(real(v), size/2, verb)
		// Imaginary part always has a sign.
		if math.IsNaN(imag(v)) {
			// By CLDR's rules, NaNs do not use patterns or signs. As this code
			// relies on AlwaysSign working for imaginary parts, we need to
			// manually handle NaNs.
			f := &p.toScientific
			p.setFlags(f)
			p.updatePadding(f)
			p.setFlags(f)
			nan := f.Symbol(number.SymNan)
			extra := 0
			if w, ok := p.Width(); ok {
				extra = w - utf8.RuneCountInString(nan) - 1
			}
			if f.Flags&number.PadAfterNumber == 0 {
				for ; extra > 0; extra-- {
					p.WriteRune(f.PadRune)
				}
			}
			p.WriteString(f.Symbol(number.SymPlusSign))
			p.WriteString(nan)
			for ; extra > 0; extra-- {
				p.WriteRune(f.PadRune)
			}
			p.WriteString("i)")
			return
		}
		oldPlus := p.fmt.Plus
		p.fmt.Plus = true
		p.fmtFloat(imag(v), size/2, verb)
		p.WriteString("i)") // TODO: use symbol?
		p.fmt.Plus = oldPlus
	default:
		p.badVerb(verb)
	}
}

func (p *printer) fmtString(v string, verb rune) {
	switch verb {
	case 'v':
		if p.fmt.SharpV {
			p.fmt.fmt_q(v)
		} else {
			p.fmt.fmt_s(v)
		}
	case 's':
		p.fmt.fmt_s(v)
	case 'x':
		p.fmt.fmt_sx(v, ldigits)
	case 'X':
		p.fmt.fmt_sx(v, udigits)
	case 'q':
		p.fmt.fmt_q(v)
	default:
		p.badVerb(verb)
	}
}

func (p *printer) fmtBytes(v []byte, verb rune, typeString string) {
	switch verb {
	case 'v', 'd':
		if p.fmt.SharpV {
			p.WriteString(typeString)
			if v == nil {
				p.WriteString(nilParenString)
				return
			}
			p.WriteByte('{')
			for i, c := range v {
				if i > 0 {
					p.WriteString(commaSpaceString)
				}
				p.fmt0x64(uint64(c), true)
			}
			p.WriteByte('}')
		} else {
			p.WriteByte('[')
			for i, c := range v {
				if i > 0 {
					p.WriteByte(' ')
				}
				p.fmt.fmt_integer(uint64(c), 10, unsigned, ldigits)
			}
			p.WriteByte(']')
		}
	case 's':
		p.fmt.fmt_s(string(v))
	case 'x':
		p.fmt.fmt_bx(v, ldigits)
	case 'X':
		p.fmt.fmt_bx(v, udigits)
	case 'q':
		p.fmt.fmt_q(string(v))
	default:
		p.printValue(reflect.ValueOf(v), verb, 0)
	}
}

func (p *printer) fmtPointer(value reflect.Value, verb rune) {
	var u uintptr
	switch value.Kind() {
	case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
		u = value.Pointer()
	default:
		p.badVerb(verb)
		return
	}

	switch verb {
	case 'v':
		if p.fmt.SharpV {
			p.WriteByte('(')
			p.WriteString(value.Type().String())
			p.WriteString(")(")
			if u == 0 {
				p.WriteString(nilString)
			} else {
				p.fmt0x64(uint64(u), true)
			}
			p.WriteByte(')')
		} else {
			if u == 0 {
				p.fmt.padString(nilAngleString)
			} else {
				p.fmt0x64(uint64(u), !p.fmt.Sharp)
			}
		}
	case 'p':
		p.fmt0x64(uint64(u), !p.fmt.Sharp)
	case 'b', 'o', 'd', 'x', 'X':
		if verb == 'd' {
			p.fmt.Sharp = true // Print as standard go. TODO: does this make sense?
		}
		p.fmtInteger(uint64(u), unsigned, verb)
	default:
		p.badVerb(verb)
	}
}

func (p *printer) catchPanic(arg interface{}, verb rune) {
	if err := recover(); err != nil {
		// If it's a nil pointer, just say "<nil>". The likeliest causes are a
		// Stringer that fails to guard against nil or a nil pointer for a
		// value receiver, and in either case, "<nil>" is a nice result.
		if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
			p.WriteString(nilAngleString)
			return
		}
		// Otherwise print a concise panic message. Most of the time the panic
		// value will print itself nicely.
		if p.panicking {
			// Nested panics; the recursion in printArg cannot succeed.
			panic(err)
		}

		oldFlags := p.fmt.Parser
		// For this output we want default behavior.
		p.fmt.ClearFlags()

		p.WriteString(percentBangString)
		p.WriteRune(verb)
		p.WriteString(panicString)
		p.panicking = true
		p.printArg(err, 'v')
		p.panicking = false
		p.WriteByte(')')

		p.fmt.Parser = oldFlags
	}
}

func (p *printer) handleMethods(verb rune) (handled bool) {
	if p.erroring {
		return
	}
	// Is it a Formatter?
	if formatter, ok := p.arg.(format.Formatter); ok {
		handled = true
		defer p.catchPanic(p.arg, verb)
		formatter.Format(p, verb)
		return
	}
	if formatter, ok := p.arg.(fmt.Formatter); ok {
		handled = true
		defer p.catchPanic(p.arg, verb)
		formatter.Format(p, verb)
		return
	}

	// If we're doing Go syntax and the argument knows how to supply it, take care of it now.
	if p.fmt.SharpV {
		if stringer, ok := p.arg.(fmt.GoStringer); ok {
			handled = true
			defer p.catchPanic(p.arg, verb)
			// Print the result of GoString unadorned.
			p.fmt.fmt_s(stringer.GoString())
			return
		}
	} else {
		// If a string is acceptable according to the format, see if
		// the value satisfies one of the string-valued interfaces.
		// Println etc. set verb to %v, which is "stringable".
		switch verb {
		case 'v', 's', 'x', 'X', 'q':
			// Is it an error or Stringer?
			// The duplication in the bodies is necessary:
			// setting handled and deferring catchPanic
			// must happen before calling the method.
			switch v := p.arg.(type) {
			case error:
				handled = true
				defer p.catchPanic(p.arg, verb)
				p.fmtString(v.Error(), verb)
				return

			case fmt.Stringer:
				handled = true
				defer p.catchPanic(p.arg, verb)
				p.fmtString(v.String(), verb)
				return
			}
		}
	}
	return false
}

func (p *printer) printArg(arg interface{}, verb rune) {
	p.arg = arg
	p.value = reflect.Value{}

	if arg == nil {
		switch verb {
		case 'T', 'v':
			p.fmt.padString(nilAngleString)
		default:
			p.badVerb(verb)
		}
		return
	}

	// Special processing considerations.
	// %T (the value's type) and %p (its address) are special; we always do them first.
	switch verb {
	case 'T':
		p.fmt.fmt_s(reflect.TypeOf(arg).String())
		return
	case 'p':
		p.fmtPointer(reflect.ValueOf(arg), 'p')
		return
	}

	// Some types can be done without reflection.
	switch f := arg.(type) {
	case bool:
		p.fmtBool(f, verb)
	case float32:
		p.fmtFloat(float64(f), 32, verb)
	case float64:
		p.fmtFloat(f, 64, verb)
	case complex64:
		p.fmtComplex(complex128(f), 64, verb)
	case complex128:
		p.fmtComplex(f, 128, verb)
	case int:
		p.fmtInteger(uint64(f), signed, verb)
	case int8:
		p.fmtInteger(uint64(f), signed, verb)
	case int16:
		p.fmtInteger(uint64(f), signed, verb)
	case int32:
		p.fmtInteger(uint64(f), signed, verb)
	case int64:
		p.fmtInteger(uint64(f), signed, verb)
	case uint:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint8:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint16:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint32:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint64:
		p.fmtInteger(f, unsigned, verb)
	case uintptr:
		p.fmtInteger(uint64(f), unsigned, verb)
	case string:
		p.fmtString(f, verb)
	case []byte:
		p.fmtBytes(f, verb, "[]byte")
	case reflect.Value:
		// Handle extractable values with special methods
		// since printValue does not handle them at depth 0.
		if f.IsValid() && f.CanInterface() {
			p.arg = f.Interface()
			if p.handleMethods(verb) {
				return
			}
		}
		p.printValue(f, verb, 0)
	default:
		// If the type is not simple, it might have methods.
		if !p.handleMethods(verb) {
			// Need to use reflection, since the type had no
			// interface methods that could be used for formatting.
			p.printValue(reflect.ValueOf(f), verb, 0)
		}
	}
}

// printValue is similar to printArg but starts with a reflect value, not an interface{} value.
// It does not handle 'p' and 'T' verbs because these should have been already handled by printArg.
func (p *printer) printValue(value reflect.Value, verb rune, depth int) {
	// Handle values with special methods if not already handled by printArg (depth == 0).
	if depth > 0 && value.IsValid() && value.CanInterface() {
		p.arg = value.Interface()
		if p.handleMethods(verb) {
			return
		}
	}
	p.arg = nil
	p.value = value

	switch f := value; value.Kind() {
	case reflect.Invalid:
		if depth == 0 {
			p.WriteString(invReflectString)
		} else {
			switch verb {
			case 'v':
				p.WriteString(nilAngleString)
			default:
				p.badVerb(verb)
			}
		}
	case reflect.Bool:
		p.fmtBool(f.Bool(), verb)
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		p.fmtInteger(uint64(f.Int()), signed, verb)
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		p.fmtInteger(f.Uint(), unsigned, verb)
	case reflect.Float32:
		p.fmtFloat(f.Float(), 32, verb)
	case reflect.Float64:
		p.fmtFloat(f.Float(), 64, verb)
	case reflect.Complex64:
		p.fmtComplex(f.Complex(), 64, verb)
	case reflect.Complex128:
		p.fmtComplex(f.Complex(), 128, verb)
	case reflect.String:
		p.fmtString(f.String(), verb)
	case reflect.Map:
		if p.fmt.SharpV {
			p.WriteString(f.Type().String())
			if f.IsNil() {
				p.WriteString(nilParenString)
				return
			}
			p.WriteByte('{')
		} else {
			p.WriteString(mapString)
		}
		keys := f.MapKeys()
		for i, key := range keys {
			if i > 0 {
				if p.fmt.SharpV {
					p.WriteString(commaSpaceString)
				} else {
					p.WriteByte(' ')
				}
			}
			p.printValue(key, verb, depth+1)
			p.WriteByte(':')
			p.printValue(f.MapIndex(key), verb, depth+1)
		}
		if p.fmt.SharpV {
			p.WriteByte('}')
		} else {
			p.WriteByte(']')
		}
	case reflect.Struct:
		if p.fmt.SharpV {
			p.WriteString(f.Type().String())
		}
		p.WriteByte('{')
		for i := 0; i < f.NumField(); i++ {
			if i > 0 {
				if p.fmt.SharpV {
					p.WriteString(commaSpaceString)
				} else {
					p.WriteByte(' ')
				}
			}
			if p.fmt.PlusV || p.fmt.SharpV {
				if name := f.Type().Field(i).Name; name != "" {
					p.WriteString(name)
					p.WriteByte(':')
				}
			}
			p.printValue(getField(f, i), verb, depth+1)
		}
		p.WriteByte('}')
	case reflect.Interface:
		value := f.Elem()
		if !value.IsValid() {
			if p.fmt.SharpV {
				p.WriteString(f.Type().String())
				p.WriteString(nilParenString)
			} else {
				p.WriteString(nilAngleString)
			}
		} else {
			p.printValue(value, verb, depth+1)
		}
	case reflect.Array, reflect.Slice:
		switch verb {
		case 's', 'q', 'x', 'X':
			// Handle byte and uint8 slices and arrays special for the above verbs.
			t := f.Type()
			if t.Elem().Kind() == reflect.Uint8 {
				var bytes []byte
				if f.Kind() == reflect.Slice {
					bytes = f.Bytes()
				} else if f.CanAddr() {
					bytes = f.Slice(0, f.Len()).Bytes()
				} else {
					// We have an array, but we cannot Slice() a non-addressable array,
					// so we build a slice by hand. This is a rare case but it would be nice
					// if reflection could help a little more.
					bytes = make([]byte, f.Len())
					for i := range bytes {
						bytes[i] = byte(f.Index(i).Uint())
					}
				}
				p.fmtBytes(bytes, verb, t.String())
				return
			}
		}
		if p.fmt.SharpV {
			p.WriteString(f.Type().String())
			if f.Kind() == reflect.Slice && f.IsNil() {
				p.WriteString(nilParenString)
				return
			}
			p.WriteByte('{')
			for i := 0; i < f.Len(); i++ {
				if i > 0 {
					p.WriteString(commaSpaceString)
				}
				p.printValue(f.Index(i), verb, depth+1)
			}
			p.WriteByte('}')
		} else {
			p.WriteByte('[')
			for i := 0; i < f.Len(); i++ {
				if i > 0 {
					p.WriteByte(' ')
				}
				p.printValue(f.Index(i), verb, depth+1)
			}
			p.WriteByte(']')
		}
	case reflect.Ptr:
		// pointer to array or slice or struct?  ok at top level
		// but not embedded (avoid loops)
		if depth == 0 && f.Pointer() != 0 {
			switch a := f.Elem(); a.Kind() {
			case reflect.Array, reflect.Slice, reflect.Struct, reflect.Map:
				p.WriteByte('&')
				p.printValue(a, verb, depth+1)
				return
			}
		}
		fallthrough
	case reflect.Chan, reflect.Func, reflect.UnsafePointer:
		p.fmtPointer(f, verb)
	default:
		p.unknownType(f)
	}
}

func (p *printer) badArgNum(verb rune) {
	p.WriteString(percentBangString)
	p.WriteRune(verb)
	p.WriteString(badIndexString)
}

func (p *printer) missingArg(verb rune) {
	p.WriteString(percentBangString)
	p.WriteRune(verb)
	p.WriteString(missingString)
}

func (p *printer) doPrintf(fmt string) {
	for p.fmt.Parser.SetFormat(fmt); p.fmt.Scan(); {
		switch p.fmt.Status {
		case format.StatusText:
			p.WriteString(p.fmt.Text())
		case format.StatusSubstitution:
			p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
		case format.StatusBadWidthSubstitution:
			p.WriteString(badWidthString)
			p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
		case format.StatusBadPrecSubstitution:
			p.WriteString(badPrecString)
			p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
		case format.StatusNoVerb:
			p.WriteString(noVerbString)
		case format.StatusBadArgNum:
			p.badArgNum(p.fmt.Verb)
		case format.StatusMissingArg:
			p.missingArg(p.fmt.Verb)
		default:
			panic("unreachable")
		}
	}

	// Check for extra arguments, but only if there was at least one ordered
	// argument. Note that this behavior is necessarily different from fmt:
	// different variants of messages may opt to drop some or all of the
	// arguments.
	if !p.fmt.Reordered && p.fmt.ArgNum < len(p.fmt.Args) && p.fmt.ArgNum != 0 {
		p.fmt.ClearFlags()
		p.WriteString(extraString)
		for i, arg := range p.fmt.Args[p.fmt.ArgNum:] {
			if i > 0 {
				p.WriteString(commaSpaceString)
			}
			if arg == nil {
				p.WriteString(nilAngleString)
			} else {
				p.WriteString(reflect.TypeOf(arg).String())
				p.WriteString("=")
				p.printArg(arg, 'v')
			}
		}
		p.WriteByte(')')
	}
}

func (p *printer) doPrint(a []interface{}) {
	prevString := false
	for argNum, arg := range a {
		isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
		// Add a space between two non-string arguments.
		if argNum > 0 && !isString && !prevString {
			p.WriteByte(' ')
		}
		p.printArg(arg, 'v')
		prevString = isString
	}
}

// doPrintln is like doPrint but always adds a space between arguments
// and a newline after the last argument.
func (p *printer) doPrintln(a []interface{}) {
	for argNum, arg := range a {
		if argNum > 0 {
			p.WriteByte(' ')
		}
		p.printArg(arg, 'v')
	}
	p.WriteByte('\n')
}