aboutsummaryrefslogtreecommitdiff
path: root/eval.go
blob: 8c6e80a4ced6cead73a325b749c065879cd77302 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
package j1

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"io"
	"io/ioutil"
)

const (
	memSize   = 0x4000
	stackSize = 0x20
)

// J1 Forth processor VM
type J1 struct {
	memory  [memSize]uint16 // 0..0x3fff main memory, 0x4000 .. 0x7fff mem-mapped i/o
	pc      uint16          // 13 bit
	st0     uint16          // top of data stack
	d       stack
	r       stack
	console io.ReadWriter
}

func New() *J1 {
	return &J1{console: NewConsole()}
}

// Reset VM
func (j1 *J1) Reset() {
	j1.pc, j1.st0, j1.d.sp, j1.r.sp = 0, 0, 0, 0
}

// LoadBytes into memory
func (j1 *J1) LoadBytes(data []byte) error {
	size := len(data) >> 1
	if size >= memSize {
		return fmt.Errorf("too big")
	}
	return binary.Read(bytes.NewReader(data), binary.LittleEndian, j1.memory[:size])
}

// LoadFile into memory
func (j1 *J1) LoadFile(fname string) error {
	data, err := ioutil.ReadFile(fname)
	if err != nil {
		return err
	}
	return j1.LoadBytes(data)
}

// Eval evaluates content of memory
func (j1 *J1) Eval() {
	for n := 0; ; n++ {
		ins := Decode(j1.memory[j1.pc])
		if ins == Jump(0) {
			return
		}
		j1.eval(ins)
		//fmt.Printf("%4d %v\n%v", n, ins, j1)
	}
}

func (j1 *J1) String() string {
	s := fmt.Sprintf("\tPC=%0.4X ST=%0.4X\n", j1.pc, j1.st0)
	s += fmt.Sprintf("\tD=%0.4X\n", j1.d.dump())
	s += fmt.Sprintf("\tR=%0.4X\n", j1.r.dump())
	return s
}

func (j1 *J1) push(v uint16) {
	j1.d.push(j1.st0)
	j1.st0 = v
}

func (j1 *J1) pop() uint16 {
	v := j1.st0
	j1.st0 = j1.d.pop()
	return v
}

func (j1 *J1) write(addr, value uint16) {
	if off := int(addr >> 1); off < memSize {
		j1.memory[addr>>1] = value
	}
	switch addr {
	case 0xf000: // key
		fmt.Fprintf(j1.console, "%c", value)
	case 0xf002: // bye
		j1.Reset()
	}
}

func (j1 *J1) read(addr uint16) uint16 {
	if off := int(addr >> 1); off < memSize {
		return j1.memory[off]
	}
	switch addr {
	case 0xf000: // tx!
		var b uint16
		fmt.Fscanf(j1.console, "%c", &b)
		return b
	case 0xf001: // ?rx
		return 1
	default:
		return 0
	}
}

func (j1 *J1) eval(ins Instruction) {
	j1.pc++
	switch v := ins.(type) {
	case Lit:
		j1.push(v.Value())
	case Jump:
		j1.pc = v.Value()
	case Call:
		j1.r.push(j1.pc << 1)
		j1.pc = v.Value()
	case Cond:
		if j1.pop() == 0 {
			j1.pc = v.Value()
		}
	case ALU:
		if v.RtoPC {
			j1.pc = j1.r.get() >> 1
		}
		if v.NtoAtT {
			j1.write(j1.st0, j1.d.get())
		}
		st0 := j1.newST0(v.Opcode)
		j1.d.move(v.Ddir)
		j1.r.move(v.Rdir)
		if v.TtoN {
			j1.d.set(j1.st0)
		}
		if v.TtoR {
			j1.r.set(j1.st0)
		}
		j1.st0 = st0
	}
}

func bool2int(b bool) uint16 {
	if b {
		return ^uint16(0)
	}
	return 0
}

func (j1 *J1) newST0(opcode uint16) uint16 {
	T, N, R := j1.st0, j1.d.get(), j1.r.get()
	switch opcode {
	case opT: // T
		return T
	case opN: // N
		return N
	case opTplusN: // T+N
		return T + N
	case opTandN: // T&N
		return T & N
	case opTorN: // T|N
		return T | N
	case opTxorN: // T^N
		return T ^ N
	case opNotT: // ~T
		return ^T
	case opNeqT: // N==T
		return bool2int(N == T)
	case opNleT: // N<T
		return bool2int(int16(N) < int16(T))
	case opNrshiftT: // N>>T
		return N >> (T & 0xf)
	case opTminus1: // T-1
		return T - 1
	case opR: // R (rT)
		return R
	case opAtT: // [T]
		return j1.read(T)
	case opNlshiftT: // N<<T
		return N << (T & 0xf)
	case opDepth: // depth (dsp)
		return (j1.r.depth() << 8) | j1.d.depth()
	case opNuleT: // Nu<T
		return bool2int(N < T)
	default:
		panic("invalid instruction")
	}
}