aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/draw
diff options
context:
space:
mode:
authorDimitri Sokolyuk <demon@dim13.org>2018-04-25 09:28:54 +0200
committerDimitri Sokolyuk <demon@dim13.org>2018-04-25 09:28:54 +0200
commite1e8d058a33f7566f9c565d04b0d8b56f9645c35 (patch)
treeddd8a705efdc02cc8968eac7410aa8fd045e2a28 /vendor/golang.org/x/image/draw
parent45109e77b62e40bb973b68412b94017bd7130754 (diff)
add vendor
Diffstat (limited to 'vendor/golang.org/x/image/draw')
-rw-r--r--vendor/golang.org/x/image/draw/draw.go43
-rw-r--r--vendor/golang.org/x/image/draw/gen.go1404
-rw-r--r--vendor/golang.org/x/image/draw/go1_8.go49
-rw-r--r--vendor/golang.org/x/image/draw/go1_9.go57
-rw-r--r--vendor/golang.org/x/image/draw/impl.go6670
-rw-r--r--vendor/golang.org/x/image/draw/scale.go527
6 files changed, 8750 insertions, 0 deletions
diff --git a/vendor/golang.org/x/image/draw/draw.go b/vendor/golang.org/x/image/draw/draw.go
new file mode 100644
index 0000000..dfaa7fc
--- /dev/null
+++ b/vendor/golang.org/x/image/draw/draw.go
@@ -0,0 +1,43 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package draw provides image composition functions.
+//
+// See "The Go image/draw package" for an introduction to this package:
+// http://golang.org/doc/articles/image_draw.html
+//
+// This package is a superset of and a drop-in replacement for the image/draw
+// package in the standard library.
+package draw
+
+// This file, and the go1_*.go files, just contains the API exported by the
+// image/draw package in the standard library. Other files in this package
+// provide additional features.
+
+import (
+ "image"
+ "image/draw"
+)
+
+// Draw calls DrawMask with a nil mask.
+func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
+ draw.Draw(dst, r, src, sp, draw.Op(op))
+}
+
+// DrawMask aligns r.Min in dst with sp in src and mp in mask and then
+// replaces the rectangle r in dst with the result of a Porter-Duff
+// composition. A nil mask is treated as opaque.
+func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
+ draw.DrawMask(dst, r, src, sp, mask, mp, draw.Op(op))
+}
+
+// FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
+// diffusion.
+var FloydSteinberg Drawer = floydSteinberg{}
+
+type floydSteinberg struct{}
+
+func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
+ draw.FloydSteinberg.Draw(dst, r, src, sp)
+}
diff --git a/vendor/golang.org/x/image/draw/gen.go b/vendor/golang.org/x/image/draw/gen.go
new file mode 100644
index 0000000..822bb6a
--- /dev/null
+++ b/vendor/golang.org/x/image/draw/gen.go
@@ -0,0 +1,1404 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build ignore
+
+package main
+
+import (
+ "bytes"
+ "flag"
+ "fmt"
+ "go/format"
+ "io/ioutil"
+ "log"
+ "os"
+ "strings"
+)
+
+var debug = flag.Bool("debug", false, "")
+
+func main() {
+ flag.Parse()
+
+ w := new(bytes.Buffer)
+ w.WriteString("// generated by \"go run gen.go\". DO NOT EDIT.\n\n" +
+ "package draw\n\nimport (\n" +
+ "\"image\"\n" +
+ "\"image/color\"\n" +
+ "\"math\"\n" +
+ "\n" +
+ "\"golang.org/x/image/math/f64\"\n" +
+ ")\n")
+
+ gen(w, "nnInterpolator", codeNNScaleLeaf, codeNNTransformLeaf)
+ gen(w, "ablInterpolator", codeABLScaleLeaf, codeABLTransformLeaf)
+ genKernel(w)
+
+ if *debug {
+ os.Stdout.Write(w.Bytes())
+ return
+ }
+ out, err := format.Source(w.Bytes())
+ if err != nil {
+ log.Fatal(err)
+ }
+ if err := ioutil.WriteFile("impl.go", out, 0660); err != nil {
+ log.Fatal(err)
+ }
+}
+
+var (
+ // dsTypes are the (dst image type, src image type) pairs to generate
+ // scale_DType_SType implementations for. The last element in the slice
+ // should be the fallback pair ("Image", "image.Image").
+ //
+ // TODO: add *image.CMYK src type after Go 1.5 is released.
+ // An *image.CMYK is also alwaysOpaque.
+ dsTypes = []struct{ dType, sType string }{
+ {"*image.RGBA", "*image.Gray"},
+ {"*image.RGBA", "*image.NRGBA"},
+ {"*image.RGBA", "*image.RGBA"},
+ {"*image.RGBA", "*image.YCbCr"},
+ {"*image.RGBA", "image.Image"},
+ {"Image", "image.Image"},
+ }
+ dTypes, sTypes []string
+ sTypesForDType = map[string][]string{}
+ subsampleRatios = []string{
+ "444",
+ "422",
+ "420",
+ "440",
+ }
+ ops = []string{"Over", "Src"}
+ // alwaysOpaque are those image.Image implementations that are always
+ // opaque. For these types, Over is equivalent to the faster Src, in the
+ // absence of a source mask.
+ alwaysOpaque = map[string]bool{
+ "*image.Gray": true,
+ "*image.YCbCr": true,
+ }
+)
+
+func init() {
+ dTypesSeen := map[string]bool{}
+ sTypesSeen := map[string]bool{}
+ for _, t := range dsTypes {
+ if !sTypesSeen[t.sType] {
+ sTypesSeen[t.sType] = true
+ sTypes = append(sTypes, t.sType)
+ }
+ if !dTypesSeen[t.dType] {
+ dTypesSeen[t.dType] = true
+ dTypes = append(dTypes, t.dType)
+ }
+ sTypesForDType[t.dType] = append(sTypesForDType[t.dType], t.sType)
+ }
+ sTypesForDType["anyDType"] = sTypes
+}
+
+type data struct {
+ dType string
+ sType string
+ sratio string
+ receiver string
+ op string
+}
+
+func gen(w *bytes.Buffer, receiver string, codes ...string) {
+ expn(w, codeRoot, &data{receiver: receiver})
+ for _, code := range codes {
+ for _, t := range dsTypes {
+ for _, op := range ops {
+ if op == "Over" && alwaysOpaque[t.sType] {
+ continue
+ }
+ expn(w, code, &data{
+ dType: t.dType,
+ sType: t.sType,
+ receiver: receiver,
+ op: op,
+ })
+ }
+ }
+ }
+}
+
+func genKernel(w *bytes.Buffer) {
+ expn(w, codeKernelRoot, &data{})
+ for _, sType := range sTypes {
+ expn(w, codeKernelScaleLeafX, &data{
+ sType: sType,
+ })
+ }
+ for _, dType := range dTypes {
+ for _, op := range ops {
+ expn(w, codeKernelScaleLeafY, &data{
+ dType: dType,
+ op: op,
+ })
+ }
+ }
+ for _, t := range dsTypes {
+ for _, op := range ops {
+ if op == "Over" && alwaysOpaque[t.sType] {
+ continue
+ }
+ expn(w, codeKernelTransformLeaf, &data{
+ dType: t.dType,
+ sType: t.sType,
+ op: op,
+ })
+ }
+ }
+}
+
+func expn(w *bytes.Buffer, code string, d *data) {
+ if d.sType == "*image.YCbCr" && d.sratio == "" {
+ for _, sratio := range subsampleRatios {
+ e := *d
+ e.sratio = sratio
+ expn(w, code, &e)
+ }
+ return
+ }
+
+ for _, line := range strings.Split(code, "\n") {
+ line = expnLine(line, d)
+ if line == ";" {
+ continue
+ }
+ fmt.Fprintln(w, line)
+ }
+}
+
+func expnLine(line string, d *data) string {
+ for {
+ i := strings.IndexByte(line, '$')
+ if i < 0 {
+ break
+ }
+ prefix, s := line[:i], line[i+1:]
+
+ i = len(s)
+ for j, c := range s {
+ if !('A' <= c && c <= 'Z' || 'a' <= c && c <= 'z') {
+ i = j
+ break
+ }
+ }
+ dollar, suffix := s[:i], s[i:]
+
+ e := expnDollar(prefix, dollar, suffix, d)
+ if e == "" {
+ log.Fatalf("couldn't expand %q", line)
+ }
+ line = e
+ }
+ return line
+}
+
+// expnDollar expands a "$foo" fragment in a line of generated code. It returns
+// the empty string if there was a problem. It returns ";" if the generated
+// code is a no-op.
+func expnDollar(prefix, dollar, suffix string, d *data) string {
+ switch dollar {
+ case "dType":
+ return prefix + d.dType + suffix
+ case "dTypeRN":
+ return prefix + relName(d.dType) + suffix
+ case "sratio":
+ return prefix + d.sratio + suffix
+ case "sType":
+ return prefix + d.sType + suffix
+ case "sTypeRN":
+ return prefix + relName(d.sType) + suffix
+ case "receiver":
+ return prefix + d.receiver + suffix
+ case "op":
+ return prefix + d.op + suffix
+
+ case "switch":
+ return expnSwitch("", "", true, suffix)
+ case "switchD":
+ return expnSwitch("", "", false, suffix)
+ case "switchS":
+ return expnSwitch("", "anyDType", false, suffix)
+
+ case "preOuter":
+ switch d.dType {
+ default:
+ return ";"
+ case "Image":
+ s := ""
+ if d.sType == "image.Image" {
+ s = "srcMask, smp := opts.SrcMask, opts.SrcMaskP\n"
+ }
+ return s +
+ "dstMask, dmp := opts.DstMask, opts.DstMaskP\n" +
+ "dstColorRGBA64 := &color.RGBA64{}\n" +
+ "dstColor := color.Color(dstColorRGBA64)"
+ }
+
+ case "preInner":
+ switch d.dType {
+ default:
+ return ";"
+ case "*image.RGBA":
+ return "d := " + pixOffset("dst", "dr.Min.X+adr.Min.X", "dr.Min.Y+int(dy)", "*4", "*dst.Stride")
+ }
+
+ case "preKernelOuter":
+ switch d.sType {
+ default:
+ return ";"
+ case "image.Image":
+ return "srcMask, smp := opts.SrcMask, opts.SrcMaskP"
+ }
+
+ case "preKernelInner":
+ switch d.dType {
+ default:
+ return ";"
+ case "*image.RGBA":
+ return "d := " + pixOffset("dst", "dr.Min.X+int(dx)", "dr.Min.Y+adr.Min.Y", "*4", "*dst.Stride")
+ }
+
+ case "blend":
+ args, _ := splitArgs(suffix)
+ if len(args) != 4 {
+ return ""
+ }
+ switch d.sType {
+ default:
+ return argf(args, ""+
+ "$3r = $0*$1r + $2*$3r\n"+
+ "$3g = $0*$1g + $2*$3g\n"+
+ "$3b = $0*$1b + $2*$3b\n"+
+ "$3a = $0*$1a + $2*$3a",
+ )
+ case "*image.Gray":
+ return argf(args, ""+
+ "$3r = $0*$1r + $2*$3r",
+ )
+ case "*image.YCbCr":
+ return argf(args, ""+
+ "$3r = $0*$1r + $2*$3r\n"+
+ "$3g = $0*$1g + $2*$3g\n"+
+ "$3b = $0*$1b + $2*$3b",
+ )
+ }
+
+ case "clampToAlpha":
+ if alwaysOpaque[d.sType] {
+ return ";"
+ }
+ // Go uses alpha-premultiplied color. The naive computation can lead to
+ // invalid colors, e.g. red > alpha, when some weights are negative.
+ return `
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+ `
+
+ case "convFtou":
+ args, _ := splitArgs(suffix)
+ if len(args) != 2 {
+ return ""
+ }
+
+ switch d.sType {
+ default:
+ return argf(args, ""+
+ "$0r := uint32($1r)\n"+
+ "$0g := uint32($1g)\n"+
+ "$0b := uint32($1b)\n"+
+ "$0a := uint32($1a)",
+ )
+ case "*image.Gray":
+ return argf(args, ""+
+ "$0r := uint32($1r)",
+ )
+ case "*image.YCbCr":
+ return argf(args, ""+
+ "$0r := uint32($1r)\n"+
+ "$0g := uint32($1g)\n"+
+ "$0b := uint32($1b)",
+ )
+ }
+
+ case "outputu":
+ args, _ := splitArgs(suffix)
+ if len(args) != 3 {
+ return ""
+ }
+
+ switch d.op {
+ case "Over":
+ switch d.dType {
+ default:
+ log.Fatalf("bad dType %q", d.dType)
+ case "Image":
+ return argf(args, ""+
+ "qr, qg, qb, qa := dst.At($0, $1).RGBA()\n"+
+ "if dstMask != nil {\n"+
+ " _, _, _, ma := dstMask.At(dmp.X + $0, dmp.Y + $1).RGBA()\n"+
+ " $2r = $2r * ma / 0xffff\n"+
+ " $2g = $2g * ma / 0xffff\n"+
+ " $2b = $2b * ma / 0xffff\n"+
+ " $2a = $2a * ma / 0xffff\n"+
+ "}\n"+
+ "$2a1 := 0xffff - $2a\n"+
+ "dstColorRGBA64.R = uint16(qr*$2a1/0xffff + $2r)\n"+
+ "dstColorRGBA64.G = uint16(qg*$2a1/0xffff + $2g)\n"+
+ "dstColorRGBA64.B = uint16(qb*$2a1/0xffff + $2b)\n"+
+ "dstColorRGBA64.A = uint16(qa*$2a1/0xffff + $2a)\n"+
+ "dst.Set($0, $1, dstColor)",
+ )
+ case "*image.RGBA":
+ return argf(args, ""+
+ "$2a1 := (0xffff - $2a) * 0x101\n"+
+ "dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*$2a1/0xffff + $2r) >> 8)\n"+
+ "dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*$2a1/0xffff + $2g) >> 8)\n"+
+ "dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*$2a1/0xffff + $2b) >> 8)\n"+
+ "dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*$2a1/0xffff + $2a) >> 8)",
+ )
+ }
+
+ case "Src":
+ switch d.dType {
+ default:
+ log.Fatalf("bad dType %q", d.dType)
+ case "Image":
+ return argf(args, ""+
+ "if dstMask != nil {\n"+
+ " qr, qg, qb, qa := dst.At($0, $1).RGBA()\n"+
+ " _, _, _, ma := dstMask.At(dmp.X + $0, dmp.Y + $1).RGBA()\n"+
+ " pr = pr * ma / 0xffff\n"+
+ " pg = pg * ma / 0xffff\n"+
+ " pb = pb * ma / 0xffff\n"+
+ " pa = pa * ma / 0xffff\n"+
+ " $2a1 := 0xffff - ma\n"+ // Note that this is ma, not $2a.
+ " dstColorRGBA64.R = uint16(qr*$2a1/0xffff + $2r)\n"+
+ " dstColorRGBA64.G = uint16(qg*$2a1/0xffff + $2g)\n"+
+ " dstColorRGBA64.B = uint16(qb*$2a1/0xffff + $2b)\n"+
+ " dstColorRGBA64.A = uint16(qa*$2a1/0xffff + $2a)\n"+
+ " dst.Set($0, $1, dstColor)\n"+
+ "} else {\n"+
+ " dstColorRGBA64.R = uint16($2r)\n"+
+ " dstColorRGBA64.G = uint16($2g)\n"+
+ " dstColorRGBA64.B = uint16($2b)\n"+
+ " dstColorRGBA64.A = uint16($2a)\n"+
+ " dst.Set($0, $1, dstColor)\n"+
+ "}",
+ )
+ case "*image.RGBA":
+ switch d.sType {
+ default:
+ return argf(args, ""+
+ "dst.Pix[d+0] = uint8($2r >> 8)\n"+
+ "dst.Pix[d+1] = uint8($2g >> 8)\n"+
+ "dst.Pix[d+2] = uint8($2b >> 8)\n"+
+ "dst.Pix[d+3] = uint8($2a >> 8)",
+ )
+ case "*image.Gray":
+ return argf(args, ""+
+ "out := uint8($2r >> 8)\n"+
+ "dst.Pix[d+0] = out\n"+
+ "dst.Pix[d+1] = out\n"+
+ "dst.Pix[d+2] = out\n"+
+ "dst.Pix[d+3] = 0xff",
+ )
+ case "*image.YCbCr":
+ return argf(args, ""+
+ "dst.Pix[d+0] = uint8($2r >> 8)\n"+
+ "dst.Pix[d+1] = uint8($2g >> 8)\n"+
+ "dst.Pix[d+2] = uint8($2b >> 8)\n"+
+ "dst.Pix[d+3] = 0xff",
+ )
+ }
+ }
+ }
+
+ case "outputf":
+ args, _ := splitArgs(suffix)
+ if len(args) != 5 {
+ return ""
+ }
+ ret := ""
+
+ switch d.op {
+ case "Over":
+ switch d.dType {
+ default:
+ log.Fatalf("bad dType %q", d.dType)
+ case "Image":
+ ret = argf(args, ""+
+ "qr, qg, qb, qa := dst.At($0, $1).RGBA()\n"+
+ "$3r0 := uint32($2($3r * $4))\n"+
+ "$3g0 := uint32($2($3g * $4))\n"+
+ "$3b0 := uint32($2($3b * $4))\n"+
+ "$3a0 := uint32($2($3a * $4))\n"+
+ "if dstMask != nil {\n"+
+ " _, _, _, ma := dstMask.At(dmp.X + $0, dmp.Y + $1).RGBA()\n"+
+ " $3r0 = $3r0 * ma / 0xffff\n"+
+ " $3g0 = $3g0 * ma / 0xffff\n"+
+ " $3b0 = $3b0 * ma / 0xffff\n"+
+ " $3a0 = $3a0 * ma / 0xffff\n"+
+ "}\n"+
+ "$3a1 := 0xffff - $3a0\n"+
+ "dstColorRGBA64.R = uint16(qr*$3a1/0xffff + $3r0)\n"+
+ "dstColorRGBA64.G = uint16(qg*$3a1/0xffff + $3g0)\n"+
+ "dstColorRGBA64.B = uint16(qb*$3a1/0xffff + $3b0)\n"+
+ "dstColorRGBA64.A = uint16(qa*$3a1/0xffff + $3a0)\n"+
+ "dst.Set($0, $1, dstColor)",
+ )
+ case "*image.RGBA":
+ ret = argf(args, ""+
+ "$3r0 := uint32($2($3r * $4))\n"+
+ "$3g0 := uint32($2($3g * $4))\n"+
+ "$3b0 := uint32($2($3b * $4))\n"+
+ "$3a0 := uint32($2($3a * $4))\n"+
+ "$3a1 := (0xffff - uint32($3a0)) * 0x101\n"+
+ "dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*$3a1/0xffff + $3r0) >> 8)\n"+
+ "dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*$3a1/0xffff + $3g0) >> 8)\n"+
+ "dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*$3a1/0xffff + $3b0) >> 8)\n"+
+ "dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*$3a1/0xffff + $3a0) >> 8)",
+ )
+ }
+
+ case "Src":
+ switch d.dType {
+ default:
+ log.Fatalf("bad dType %q", d.dType)
+ case "Image":
+ ret = argf(args, ""+
+ "if dstMask != nil {\n"+
+ " qr, qg, qb, qa := dst.At($0, $1).RGBA()\n"+
+ " _, _, _, ma := dstMask.At(dmp.X + $0, dmp.Y + $1).RGBA()\n"+
+ " pr := uint32($2($3r * $4)) * ma / 0xffff\n"+
+ " pg := uint32($2($3g * $4)) * ma / 0xffff\n"+
+ " pb := uint32($2($3b * $4)) * ma / 0xffff\n"+
+ " pa := uint32($2($3a * $4)) * ma / 0xffff\n"+
+ " pa1 := 0xffff - ma\n"+ // Note that this is ma, not pa.
+ " dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)\n"+
+ " dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)\n"+
+ " dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)\n"+
+ " dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)\n"+
+ " dst.Set($0, $1, dstColor)\n"+
+ "} else {\n"+
+ " dstColorRGBA64.R = $2($3r * $4)\n"+
+ " dstColorRGBA64.G = $2($3g * $4)\n"+
+ " dstColorRGBA64.B = $2($3b * $4)\n"+
+ " dstColorRGBA64.A = $2($3a * $4)\n"+
+ " dst.Set($0, $1, dstColor)\n"+
+ "}",
+ )
+ case "*image.RGBA":
+ switch d.sType {
+ default:
+ ret = argf(args, ""+
+ "dst.Pix[d+0] = uint8($2($3r * $4) >> 8)\n"+
+ "dst.Pix[d+1] = uint8($2($3g * $4) >> 8)\n"+
+ "dst.Pix[d+2] = uint8($2($3b * $4) >> 8)\n"+
+ "dst.Pix[d+3] = uint8($2($3a * $4) >> 8)",
+ )
+ case "*image.Gray":
+ ret = argf(args, ""+
+ "out := uint8($2($3r * $4) >> 8)\n"+
+ "dst.Pix[d+0] = out\n"+
+ "dst.Pix[d+1] = out\n"+
+ "dst.Pix[d+2] = out\n"+
+ "dst.Pix[d+3] = 0xff",
+ )
+ case "*image.YCbCr":
+ ret = argf(args, ""+
+ "dst.Pix[d+0] = uint8($2($3r * $4) >> 8)\n"+
+ "dst.Pix[d+1] = uint8($2($3g * $4) >> 8)\n"+
+ "dst.Pix[d+2] = uint8($2($3b * $4) >> 8)\n"+
+ "dst.Pix[d+3] = 0xff",
+ )
+ }
+ }
+ }
+
+ return strings.Replace(ret, " * 1)", ")", -1)
+
+ case "srcf", "srcu":
+ lhs, eqOp := splitEq(prefix)
+ if lhs == "" {
+ return ""
+ }
+ args, extra := splitArgs(suffix)
+ if len(args) != 2 {
+ return ""
+ }
+
+ tmp := ""
+ if dollar == "srcf" {
+ tmp = "u"
+ }
+
+ // TODO: there's no need to multiply by 0x101 in the switch below if
+ // the next thing we're going to do is shift right by 8.
+
+ buf := new(bytes.Buffer)
+ switch d.sType {
+ default:
+ log.Fatalf("bad sType %q", d.sType)
+ case "image.Image":
+ fmt.Fprintf(buf, ""+
+ "%sr%s, %sg%s, %sb%s, %sa%s := src.At(%s, %s).RGBA()\n",
+ lhs, tmp, lhs, tmp, lhs, tmp, lhs, tmp, args[0], args[1],
+ )
+ if d.dType == "" || d.dType == "Image" {
+ fmt.Fprintf(buf, ""+
+ "if srcMask != nil {\n"+
+ " _, _, _, ma := srcMask.At(smp.X+%s, smp.Y+%s).RGBA()\n"+
+ " %sr%s = %sr%s * ma / 0xffff\n"+
+ " %sg%s = %sg%s * ma / 0xffff\n"+
+ " %sb%s = %sb%s * ma / 0xffff\n"+
+ " %sa%s = %sa%s * ma / 0xffff\n"+
+ "}\n",
+ args[0], args[1],
+ lhs, tmp, lhs, tmp,
+ lhs, tmp, lhs, tmp,
+ lhs, tmp, lhs, tmp,
+ lhs, tmp, lhs, tmp,
+ )
+ }
+ case "*image.Gray":
+ fmt.Fprintf(buf, ""+
+ "%si := %s\n"+
+ "%sr%s := uint32(src.Pix[%si]) * 0x101\n",
+ lhs, pixOffset("src", args[0], args[1], "", "*src.Stride"),
+ lhs, tmp, lhs,
+ )
+ case "*image.NRGBA":
+ fmt.Fprintf(buf, ""+
+ "%si := %s\n"+
+ "%sa%s := uint32(src.Pix[%si+3]) * 0x101\n"+
+ "%sr%s := uint32(src.Pix[%si+0]) * %sa%s / 0xff\n"+
+ "%sg%s := uint32(src.Pix[%si+1]) * %sa%s / 0xff\n"+
+ "%sb%s := uint32(src.Pix[%si+2]) * %sa%s / 0xff\n",
+ lhs, pixOffset("src", args[0], args[1], "*4", "*src.Stride"),
+ lhs, tmp, lhs,
+ lhs, tmp, lhs, lhs, tmp,
+ lhs, tmp, lhs, lhs, tmp,
+ lhs, tmp, lhs, lhs, tmp,
+ )
+ case "*image.RGBA":
+ fmt.Fprintf(buf, ""+
+ "%si := %s\n"+
+ "%sr%s := uint32(src.Pix[%si+0]) * 0x101\n"+
+ "%sg%s := uint32(src.Pix[%si+1]) * 0x101\n"+
+ "%sb%s := uint32(src.Pix[%si+2]) * 0x101\n"+
+ "%sa%s := uint32(src.Pix[%si+3]) * 0x101\n",
+ lhs, pixOffset("src", args[0], args[1], "*4", "*src.Stride"),
+ lhs, tmp, lhs,
+ lhs, tmp, lhs,
+ lhs, tmp, lhs,
+ lhs, tmp, lhs,
+ )
+ case "*image.YCbCr":
+ fmt.Fprintf(buf, ""+
+ "%si := %s\n"+
+ "%sj := %s\n"+
+ "%s\n",
+ lhs, pixOffset("src", args[0], args[1], "", "*src.YStride"),
+ lhs, cOffset(args[0], args[1], d.sratio),
+ ycbcrToRGB(lhs, tmp),
+ )
+ }
+
+ if dollar == "srcf" {
+ switch d.sType {
+ default:
+ fmt.Fprintf(buf, ""+
+ "%sr %s float64(%sru)%s\n"+
+ "%sg %s float64(%sgu)%s\n"+
+ "%sb %s float64(%sbu)%s\n"+
+ "%sa %s float64(%sau)%s\n",
+ lhs, eqOp, lhs, extra,
+ lhs, eqOp, lhs, extra,
+ lhs, eqOp, lhs, extra,
+ lhs, eqOp, lhs, extra,
+ )
+ case "*image.Gray":
+ fmt.Fprintf(buf, ""+
+ "%sr %s float64(%sru)%s\n",
+ lhs, eqOp, lhs, extra,
+ )
+ case "*image.YCbCr":
+ fmt.Fprintf(buf, ""+
+ "%sr %s float64(%sru)%s\n"+
+ "%sg %s float64(%sgu)%s\n"+
+ "%sb %s float64(%sbu)%s\n",
+ lhs, eqOp, lhs, extra,
+ lhs, eqOp, lhs, extra,
+ lhs, eqOp, lhs, extra,
+ )
+ }
+ }
+
+ return strings.TrimSpace(buf.String())
+
+ case "tweakD":
+ if d.dType == "*image.RGBA" {
+ return "d += dst.Stride"
+ }
+ return ";"
+
+ case "tweakDx":
+ if d.dType == "*image.RGBA" {
+ return strings.Replace(prefix, "dx++", "dx, d = dx+1, d+4", 1)
+ }
+ return prefix
+
+ case "tweakDy":
+ if d.dType == "*image.RGBA" {
+ return strings.Replace(prefix, "for dy, s", "for _, s", 1)
+ }
+ return prefix
+
+ case "tweakP":
+ switch d.sType {
+ case "*image.Gray":
+ if strings.HasPrefix(strings.TrimSpace(prefix), "pa * ") {
+ return "1,"
+ }
+ return "pr,"
+ case "*image.YCbCr":
+ if strings.HasPrefix(strings.TrimSpace(prefix), "pa * ") {
+ return "1,"
+ }
+ }
+ return prefix
+
+ case "tweakPr":
+ if d.sType == "*image.Gray" {
+ return "pr *= s.invTotalWeightFFFF"
+ }
+ return ";"
+
+ case "tweakVarP":
+ switch d.sType {
+ case "*image.Gray":
+ return strings.Replace(prefix, "var pr, pg, pb, pa", "var pr", 1)
+ case "*image.YCbCr":
+ return strings.Replace(prefix, "var pr, pg, pb, pa", "var pr, pg, pb", 1)
+ }
+ return prefix
+ }
+ return ""
+}
+
+func expnSwitch(op, dType string, expandBoth bool, template string) string {
+ if op == "" && dType != "anyDType" {
+ lines := []string{"switch op {"}
+ for _, op = range ops {
+ lines = append(lines,
+ fmt.Sprintf("case %s:", op),
+ expnSwitch(op, dType, expandBoth, template),
+ )
+ }
+ lines = append(lines, "}")
+ return strings.Join(lines, "\n")
+ }
+
+ switchVar := "dst"
+ if dType != "" {
+ switchVar = "src"
+ }
+ lines := []string{fmt.Sprintf("switch %s := %s.(type) {", switchVar, switchVar)}
+
+ fallback, values := "Image", dTypes
+ if dType != "" {
+ fallback, values = "image.Image", sTypesForDType[dType]
+ }
+ for _, v := range values {
+ if dType != "" {
+ // v is the sType. Skip those always-opaque sTypes, where Over is
+ // equivalent to Src.
+ if op == "Over" && alwaysOpaque[v] {
+ continue
+ }
+ }
+
+ if v == fallback {
+ lines = append(lines, "default:")
+ } else {
+ lines = append(lines, fmt.Sprintf("case %s:", v))
+ }
+
+ if dType != "" {
+ if v == "*image.YCbCr" {
+ lines = append(lines, expnSwitchYCbCr(op, dType, template))
+ } else {
+ lines = append(lines, expnLine(template, &data{dType: dType, sType: v, op: op}))
+ }
+ } else if !expandBoth {
+ lines = append(lines, expnLine(template, &data{dType: v, op: op}))
+ } else {
+ lines = append(lines, expnSwitch(op, v, false, template))
+ }
+ }
+
+ lines = append(lines, "}")
+ return strings.Join(lines, "\n")
+}
+
+func expnSwitchYCbCr(op, dType, template string) string {
+ lines := []string{
+ "switch src.SubsampleRatio {",
+ "default:",
+ expnLine(template, &data{dType: dType, sType: "image.Image", op: op}),
+ }
+ for _, sratio := range subsampleRatios {
+ lines = append(lines,
+ fmt.Sprintf("case image.YCbCrSubsampleRatio%s:", sratio),
+ expnLine(template, &data{dType: dType, sType: "*image.YCbCr", sratio: sratio, op: op}),
+ )
+ }
+ lines = append(lines, "}")
+ return strings.Join(lines, "\n")
+}
+
+func argf(args []string, s string) string {
+ if len(args) > 9 {
+ panic("too many args")
+ }
+ for i, a := range args {
+ old := fmt.Sprintf("$%d", i)
+ s = strings.Replace(s, old, a, -1)
+ }
+ return s
+}
+
+func pixOffset(m, x, y, xstride, ystride string) string {
+ return fmt.Sprintf("(%s-%s.Rect.Min.Y)%s + (%s-%s.Rect.Min.X)%s", y, m, ystride, x, m, xstride)
+}
+
+func cOffset(x, y, sratio string) string {
+ switch sratio {
+ case "444":
+ return fmt.Sprintf("( %s - src.Rect.Min.Y )*src.CStride + ( %s - src.Rect.Min.X )", y, x)
+ case "422":
+ return fmt.Sprintf("( %s - src.Rect.Min.Y )*src.CStride + ((%s)/2 - src.Rect.Min.X/2)", y, x)
+ case "420":
+ return fmt.Sprintf("((%s)/2 - src.Rect.Min.Y/2)*src.CStride + ((%s)/2 - src.Rect.Min.X/2)", y, x)
+ case "440":
+ return fmt.Sprintf("((%s)/2 - src.Rect.Min.Y/2)*src.CStride + ( %s - src.Rect.Min.X )", y, x)
+ }
+ return fmt.Sprintf("unsupported sratio %q", sratio)
+}
+
+func ycbcrToRGB(lhs, tmp string) string {
+ s := `
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ $yy1 := int(src.Y[$i]) * 0x10101
+ $cb1 := int(src.Cb[$j]) - 128
+ $cr1 := int(src.Cr[$j]) - 128
+ $r@ := ($yy1 + 91881*$cr1) >> 8
+ $g@ := ($yy1 - 22554*$cb1 - 46802*$cr1) >> 8
+ $b@ := ($yy1 + 116130*$cb1) >> 8
+ if $r@ < 0 {
+ $r@ = 0
+ } else if $r@ > 0xffff {
+ $r@ = 0xffff
+ }
+ if $g@ < 0 {
+ $g@ = 0
+ } else if $g@ > 0xffff {
+ $g@ = 0xffff
+ }
+ if $b@ < 0 {
+ $b@ = 0
+ } else if $b@ > 0xffff {
+ $b@ = 0xffff
+ }
+ `
+ s = strings.Replace(s, "$", lhs, -1)
+ s = strings.Replace(s, "@", tmp, -1)
+ return s
+}
+
+func split(s, sep string) (string, string) {
+ if i := strings.Index(s, sep); i >= 0 {
+ return strings.TrimSpace(s[:i]), strings.TrimSpace(s[i+len(sep):])
+ }
+ return "", ""
+}
+
+func splitEq(s string) (lhs, eqOp string) {
+ s = strings.TrimSpace(s)
+ if lhs, _ = split(s, ":="); lhs != "" {
+ return lhs, ":="
+ }
+ if lhs, _ = split(s, "+="); lhs != "" {
+ return lhs, "+="
+ }
+ return "", ""
+}
+
+func splitArgs(s string) (args []string, extra string) {
+ s = strings.TrimSpace(s)
+ if s == "" || s[0] != '[' {
+ return nil, ""
+ }
+ s = s[1:]
+
+ i := strings.IndexByte(s, ']')
+ if i < 0 {
+ return nil, ""
+ }
+ args, extra = strings.Split(s[:i], ","), s[i+1:]
+ for i := range args {
+ args[i] = strings.TrimSpace(args[i])
+ }
+ return args, extra
+}
+
+func relName(s string) string {
+ if i := strings.LastIndex(s, "."); i >= 0 {
+ return s[i+1:]
+ }
+ return s
+}
+
+const (
+ codeRoot = `
+ func (z $receiver) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ // Try to simplify a Scale to a Copy when DstMask is not specified.
+ // If DstMask is not nil, Copy will call Scale back with same dr and sr, and cause stack overflow.
+ if dr.Size() == sr.Size() && (opts == nil || opts.DstMask == nil) {
+ Copy(dst, dr.Min, src, sr, op, opts)
+ return
+ }
+
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
+ switch op {
+ case Over:
+ z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
+ case Src:
+ z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
+ }
+ } else if _, ok := src.(*image.Uniform); ok {
+ Draw(dst, dr, src, src.Bounds().Min, op)
+ } else {
+ $switch z.scale_$dTypeRN_$sTypeRN$sratio_$op(dst, dr, adr, src, sr, &o)
+ }
+ }
+
+ func (z $receiver) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ // Try to simplify a Transform to a Copy.
+ if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 {
+ dx := int(s2d[2])
+ dy := int(s2d[5])
+ if float64(dx) == s2d[2] && float64(dy) == s2d[5] {
+ Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts)
+ return
+ }
+ }
+
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ dr := transformRect(&s2d, &sr)
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+
+ d2s := invert(&s2d)
+ // bias is a translation of the mapping from dst coordinates to src
+ // coordinates such that the latter temporarily have non-negative X
+ // and Y coordinates. This allows us to write int(f) instead of
+ // int(math.Floor(f)), since "round to zero" and "round down" are
+ // equivalent when f >= 0, but the former is much cheaper. The X--
+ // and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
+ // adjustment.
+ bias := transformRect(&d2s, &adr).Min
+ bias.X--
+ bias.Y--
+ d2s[2] -= float64(bias.X)
+ d2s[5] -= float64(bias.Y)
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
+ switch op {
+ case Over:
+ z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case Src:
+ z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ } else if u, ok := src.(*image.Uniform); ok {
+ transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
+ } else {
+ $switch z.transform_$dTypeRN_$sTypeRN$sratio_$op(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ }
+ `
+
+ codeNNScaleLeaf = `
+ func (nnInterpolator) scale_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, src $sType, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ $preOuter
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ $preInner
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ p := $srcu[sr.Min.X + int(sx), sr.Min.Y + int(sy)]
+ $outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p]
+ }
+ }
+ }
+ `
+
+ codeNNTransformLeaf = `
+ func (nnInterpolator) transform_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point, opts *Options) {
+ $preOuter
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y + int(dy)) + 0.5
+ $preInner
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
+ dxf := float64(dr.Min.X + int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf + d2s[1]*dyf + d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf + d2s[4]*dyf + d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ p := $srcu[sx0, sy0]
+ $outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p]
+ }
+ }
+ }
+ `
+
+ codeABLScaleLeaf = `
+ func (ablInterpolator) scale_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, src $sType, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw - 1, sh - 1
+ $preOuter
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ $preInner
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00 := $srcf[sr.Min.X + int(sx0), sr.Min.Y + int(sy0)]
+ s10 := $srcf[sr.Min.X + int(sx1), sr.Min.Y + int(sy0)]
+ $blend[xFrac1, s00, xFrac0, s10]
+ s01 := $srcf[sr.Min.X + int(sx0), sr.Min.Y + int(sy1)]
+ s11 := $srcf[sr.Min.X + int(sx1), sr.Min.Y + int(sy1)]
+ $blend[xFrac1, s01, xFrac0, s11]
+ $blend[yFrac1, s10, yFrac0, s11]
+ $convFtou[p, s11]
+ $outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p]
+ }
+ }
+ }
+ `
+
+ codeABLTransformLeaf = `
+ func (ablInterpolator) transform_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point, opts *Options) {
+ $preOuter
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y + int(dy)) + 0.5
+ $preInner
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
+ dxf := float64(dr.Min.X + int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00 := $srcf[sx0, sy0]
+ s10 := $srcf[sx1, sy0]
+ $blend[xFrac1, s00, xFrac0, s10]
+ s01 := $srcf[sx0, sy1]
+ s11 := $srcf[sx1, sy1]
+ $blend[xFrac1, s01, xFrac0, s11]
+ $blend[yFrac1, s10, yFrac0, s11]
+ $convFtou[p, s11]
+ $outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p]
+ }
+ }
+ }
+ `
+
+ codeKernelRoot = `
+ func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) {
+ z.kernel.Scale(dst, dr, src, sr, op, opts)
+ return
+ }
+
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+
+ if _, ok := src.(*image.Uniform); ok && o.DstMask == nil && o.SrcMask == nil && sr.In(src.Bounds()) {
+ Draw(dst, dr, src, src.Bounds().Min, op)
+ return
+ }
+
+ // Create a temporary buffer:
+ // scaleX distributes the source image's columns over the temporary image.
+ // scaleY distributes the temporary image's rows over the destination image.
+ var tmp [][4]float64
+ if z.pool.New != nil {
+ tmpp := z.pool.Get().(*[][4]float64)
+ defer z.pool.Put(tmpp)
+ tmp = *tmpp
+ } else {
+ tmp = z.makeTmpBuf()
+ }
+
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.SrcMask != nil || !sr.In(src.Bounds()) {
+ z.scaleX_Image(tmp, src, sr, &o)
+ } else {
+ $switchS z.scaleX_$sTypeRN$sratio(tmp, src, sr, &o)
+ }
+
+ if o.DstMask != nil {
+ switch op {
+ case Over:
+ z.scaleY_Image_Over(dst, dr, adr, tmp, &o)
+ case Src:
+ z.scaleY_Image_Src(dst, dr, adr, tmp, &o)
+ }
+ } else {
+ $switchD z.scaleY_$dTypeRN_$op(dst, dr, adr, tmp, &o)
+ }
+ }
+
+ func (q *Kernel) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ dr := transformRect(&s2d, &sr)
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+ d2s := invert(&s2d)
+ // bias is a translation of the mapping from dst coordinates to src
+ // coordinates such that the latter temporarily have non-negative X
+ // and Y coordinates. This allows us to write int(f) instead of
+ // int(math.Floor(f)), since "round to zero" and "round down" are
+ // equivalent when f >= 0, but the former is much cheaper. The X--
+ // and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
+ // adjustment.
+ bias := transformRect(&d2s, &adr).Min
+ bias.X--
+ bias.Y--
+ d2s[2] -= float64(bias.X)
+ d2s[5] -= float64(bias.Y)
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+
+ if u, ok := src.(*image.Uniform); ok && o.DstMask != nil && o.SrcMask != nil && sr.In(src.Bounds()) {
+ transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
+ return
+ }
+
+ xscale := abs(d2s[0])
+ if s := abs(d2s[1]); xscale < s {
+ xscale = s
+ }
+ yscale := abs(d2s[3])
+ if s := abs(d2s[4]); yscale < s {
+ yscale = s
+ }
+
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
+ switch op {
+ case Over:
+ q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case Src:
+ q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ }
+ } else {
+ $switch q.transform_$dTypeRN_$sTypeRN$sratio_$op(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ }
+ }
+ `
+
+ codeKernelScaleLeafX = `
+ func (z *kernelScaler) scaleX_$sTypeRN$sratio(tmp [][4]float64, src $sType, sr image.Rectangle, opts *Options) {
+ t := 0
+ $preKernelOuter
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr, pg, pb, pa float64 $tweakVarP
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ p += $srcf[sr.Min.X + int(c.coord), sr.Min.Y + int(y)] * c.weight
+ }
+ $tweakPr
+ tmp[t] = [4]float64{
+ pr * s.invTotalWeightFFFF, $tweakP
+ pg * s.invTotalWeightFFFF, $tweakP
+ pb * s.invTotalWeightFFFF, $tweakP
+ pa * s.invTotalWeightFFFF, $tweakP
+ }
+ t++
+ }
+ }
+ }
+ `
+
+ codeKernelScaleLeafY = `
+ func (z *kernelScaler) scaleY_$dTypeRN_$op(dst $dType, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
+ $preOuter
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ $preKernelInner
+ for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { $tweakDy
+ var pr, pg, pb, pa float64
+ for _, c := range z.vertical.contribs[s.i:s.j] {
+ p := &tmp[c.coord*z.dw+dx]
+ pr += p[0] * c.weight
+ pg += p[1] * c.weight
+ pb += p[2] * c.weight
+ pa += p[3] * c.weight
+ }
+ $clampToAlpha
+ $outputf[dr.Min.X + int(dx), dr.Min.Y + int(adr.Min.Y + dy), ftou, p, s.invTotalWeight]
+ $tweakD
+ }
+ }
+ }
+ `
+
+ codeKernelTransformLeaf = `
+ func (q *Kernel) transform_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1 + 2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1 + 2*int(math.Ceil(yHalfWidth)))
+
+ $preOuter
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y + int(dy)) + 0.5
+ $preInner
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
+ dxf := float64(dr.Min.X + int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx - ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky - iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64 $tweakVarP
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky - iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx - ix] * yWeight; w != 0 {
+ p += $srcf[kx, ky] * w
+ }
+ }
+ }
+ }
+ $clampToAlpha
+ $outputf[dr.Min.X + int(dx), dr.Min.Y + int(dy), fffftou, p, 1]
+ }
+ }
+ }
+ `
+)
diff --git a/vendor/golang.org/x/image/draw/go1_8.go b/vendor/golang.org/x/image/draw/go1_8.go
new file mode 100644
index 0000000..ec192b7
--- /dev/null
+++ b/vendor/golang.org/x/image/draw/go1_8.go
@@ -0,0 +1,49 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build !go1.9,!go1.8.typealias
+
+package draw
+
+import (
+ "image"
+ "image/color"
+ "image/draw"
+)
+
+// Drawer contains the Draw method.
+type Drawer interface {
+ // Draw aligns r.Min in dst with sp in src and then replaces the
+ // rectangle r in dst with the result of drawing src on dst.
+ Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
+}
+
+// Image is an image.Image with a Set method to change a single pixel.
+type Image interface {
+ image.Image
+ Set(x, y int, c color.Color)
+}
+
+// Op is a Porter-Duff compositing operator.
+type Op int
+
+const (
+ // Over specifies ``(src in mask) over dst''.
+ Over Op = Op(draw.Over)
+ // Src specifies ``src in mask''.
+ Src Op = Op(draw.Src)
+)
+
+// Draw implements the Drawer interface by calling the Draw function with
+// this Op.
+func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
+ (draw.Op(op)).Draw(dst, r, src, sp)
+}
+
+// Quantizer produces a palette for an image.
+type Quantizer interface {
+ // Quantize appends up to cap(p) - len(p) colors to p and returns the
+ // updated palette suitable for converting m to a paletted image.
+ Quantize(p color.Palette, m image.Image) color.Palette
+}
diff --git a/vendor/golang.org/x/image/draw/go1_9.go b/vendor/golang.org/x/image/draw/go1_9.go
new file mode 100644
index 0000000..fc548e9
--- /dev/null
+++ b/vendor/golang.org/x/image/draw/go1_9.go
@@ -0,0 +1,57 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build go1.9 go1.8.typealias
+
+package draw
+
+import (
+ "image/draw"
+)
+
+// We use type aliases (new in Go 1.9) for the exported names from the standard
+// library's image/draw package. This is not merely syntactic sugar for
+//
+// type Drawer draw.Drawer
+//
+// as aliasing means that the types in this package, such as draw.Image and
+// draw.Op, are identical to the corresponding draw.Image and draw.Op types in
+// the standard library. In comparison, prior to Go 1.9, the code in go1_8.go
+// defines new types that mimic the old but are different types.
+//
+// The package documentation, in draw.go, explicitly gives the intent of this
+// package:
+//
+// This package is a superset of and a drop-in replacement for the
+// image/draw package in the standard library.
+//
+// Drop-in replacement means that I can replace all of my "image/draw" imports
+// with "golang.org/x/image/draw", to access additional features in this
+// package, and no further changes are required. That's mostly true, but not
+// completely true unless we use type aliases.
+//
+// Without type aliases, users might need to import both "image/draw" and
+// "golang.org/x/image/draw" in order to convert from two conceptually
+// equivalent but different (from the compiler's point of view) types, such as
+// from one draw.Op type to another draw.Op type, to satisfy some other
+// interface or function signature.
+
+// Drawer contains the Draw method.
+type Drawer = draw.Drawer
+
+// Image is an image.Image with a Set method to change a single pixel.
+type Image = draw.Image
+
+// Op is a Porter-Duff compositing operator.
+type Op = draw.Op
+
+const (
+ // Over specifies ``(src in mask) over dst''.
+ Over Op = draw.Over
+ // Src specifies ``src in mask''.
+ Src Op = draw.Src
+)
+
+// Quantizer produces a palette for an image.
+type Quantizer = draw.Quantizer
diff --git a/vendor/golang.org/x/image/draw/impl.go b/vendor/golang.org/x/image/draw/impl.go
new file mode 100644
index 0000000..75498ad
--- /dev/null
+++ b/vendor/golang.org/x/image/draw/impl.go
@@ -0,0 +1,6670 @@
+// generated by "go run gen.go". DO NOT EDIT.
+
+package draw
+
+import (
+ "image"
+ "image/color"
+ "math"
+
+ "golang.org/x/image/math/f64"
+)
+
+func (z nnInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ // Try to simplify a Scale to a Copy when DstMask is not specified.
+ // If DstMask is not nil, Copy will call Scale back with same dr and sr, and cause stack overflow.
+ if dr.Size() == sr.Size() && (opts == nil || opts.DstMask == nil) {
+ Copy(dst, dr.Min, src, sr, op, opts)
+ return
+ }
+
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
+ switch op {
+ case Over:
+ z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
+ case Src:
+ z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
+ }
+ } else if _, ok := src.(*image.Uniform); ok {
+ Draw(dst, dr, src, src.Bounds().Min, op)
+ } else {
+ switch op {
+ case Over:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.NRGBA:
+ z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr, &o)
+ case *image.RGBA:
+ z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr, &o)
+ default:
+ z.scale_RGBA_Image_Over(dst, dr, adr, src, sr, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
+ }
+ }
+ case Src:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.Gray:
+ z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr, &o)
+ case *image.NRGBA:
+ z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr, &o)
+ case *image.RGBA:
+ z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr, &o)
+ case *image.YCbCr:
+ switch src.SubsampleRatio {
+ default:
+ z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
+ case image.YCbCrSubsampleRatio444:
+ z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr, &o)
+ case image.YCbCrSubsampleRatio422:
+ z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr, &o)
+ case image.YCbCrSubsampleRatio420:
+ z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr, &o)
+ case image.YCbCrSubsampleRatio440:
+ z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr, &o)
+ }
+ default:
+ z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
+ }
+ }
+ }
+ }
+}
+
+func (z nnInterpolator) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ // Try to simplify a Transform to a Copy.
+ if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 {
+ dx := int(s2d[2])
+ dy := int(s2d[5])
+ if float64(dx) == s2d[2] && float64(dy) == s2d[5] {
+ Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts)
+ return
+ }
+ }
+
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ dr := transformRect(&s2d, &sr)
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+
+ d2s := invert(&s2d)
+ // bias is a translation of the mapping from dst coordinates to src
+ // coordinates such that the latter temporarily have non-negative X
+ // and Y coordinates. This allows us to write int(f) instead of
+ // int(math.Floor(f)), since "round to zero" and "round down" are
+ // equivalent when f >= 0, but the former is much cheaper. The X--
+ // and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
+ // adjustment.
+ bias := transformRect(&d2s, &adr).Min
+ bias.X--
+ bias.Y--
+ d2s[2] -= float64(bias.X)
+ d2s[5] -= float64(bias.Y)
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
+ switch op {
+ case Over:
+ z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case Src:
+ z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ } else if u, ok := src.(*image.Uniform); ok {
+ transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
+ } else {
+ switch op {
+ case Over:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.NRGBA:
+ z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case *image.RGBA:
+ z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ default:
+ z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ }
+ case Src:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.Gray:
+ z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case *image.NRGBA:
+ z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case *image.RGBA:
+ z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case *image.YCbCr:
+ switch src.SubsampleRatio {
+ default:
+ z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case image.YCbCrSubsampleRatio444:
+ z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case image.YCbCrSubsampleRatio422:
+ z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case image.YCbCrSubsampleRatio420:
+ z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case image.YCbCrSubsampleRatio440:
+ z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ default:
+ z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ }
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx) - src.Rect.Min.X)
+ pr := uint32(src.Pix[pi]) * 0x101
+ out := uint8(pr >> 8)
+ dst.Pix[d+0] = out
+ dst.Pix[d+1] = out
+ dst.Pix[d+2] = out
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
+ pa := uint32(src.Pix[pi+3]) * 0x101
+ pr := uint32(src.Pix[pi+0]) * pa / 0xff
+ pg := uint32(src.Pix[pi+1]) * pa / 0xff
+ pb := uint32(src.Pix[pi+2]) * pa / 0xff
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
+ pa := uint32(src.Pix[pi+3]) * 0x101
+ pr := uint32(src.Pix[pi+0]) * pa / 0xff
+ pg := uint32(src.Pix[pi+1]) * pa / 0xff
+ pb := uint32(src.Pix[pi+2]) * pa / 0xff
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
+ pr := uint32(src.Pix[pi+0]) * 0x101
+ pg := uint32(src.Pix[pi+1]) * 0x101
+ pb := uint32(src.Pix[pi+2]) * 0x101
+ pa := uint32(src.Pix[pi+3]) * 0x101
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
+ pr := uint32(src.Pix[pi+0]) * 0x101
+ pg := uint32(src.Pix[pi+1]) * 0x101
+ pb := uint32(src.Pix[pi+2]) * 0x101
+ pa := uint32(src.Pix[pi+3]) * 0x101
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
+ pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pr := (pyy1 + 91881*pcr1) >> 8
+ pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pb := (pyy1 + 116130*pcb1) >> 8
+ if pr < 0 {
+ pr = 0
+ } else if pr > 0xffff {
+ pr = 0xffff
+ }
+ if pg < 0 {
+ pg = 0
+ } else if pg > 0xffff {
+ pg = 0xffff
+ }
+ if pb < 0 {
+ pb = 0
+ } else if pb > 0xffff {
+ pb = 0xffff
+ }
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
+ pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pr := (pyy1 + 91881*pcr1) >> 8
+ pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pb := (pyy1 + 116130*pcb1) >> 8
+ if pr < 0 {
+ pr = 0
+ } else if pr > 0xffff {
+ pr = 0xffff
+ }
+ if pg < 0 {
+ pg = 0
+ } else if pg > 0xffff {
+ pg = 0xffff
+ }
+ if pb < 0 {
+ pb = 0
+ } else if pb > 0xffff {
+ pb = 0xffff
+ }
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
+ pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pr := (pyy1 + 91881*pcr1) >> 8
+ pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pb := (pyy1 + 116130*pcb1) >> 8
+ if pr < 0 {
+ pr = 0
+ } else if pr > 0xffff {
+ pr = 0xffff
+ }
+ if pg < 0 {
+ pg = 0
+ } else if pg > 0xffff {
+ pg = 0xffff
+ }
+ if pb < 0 {
+ pb = 0
+ } else if pb > 0xffff {
+ pb = 0xffff
+ }
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
+ pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pr := (pyy1 + 91881*pcr1) >> 8
+ pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pb := (pyy1 + 116130*pcb1) >> 8
+ if pr < 0 {
+ pr = 0
+ } else if pr > 0xffff {
+ pr = 0xffff
+ }
+ if pg < 0 {
+ pg = 0
+ } else if pg > 0xffff {
+ pg = 0xffff
+ }
+ if pb < 0 {
+ pb = 0
+ } else if pb > 0xffff {
+ pb = 0xffff
+ }
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx), smp.Y+sr.Min.Y+int(sy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ }
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ if dstMask != nil {
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ }
+ pa1 := 0xffff - pa
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+}
+
+func (nnInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
+ dw2 := uint64(dr.Dx()) * 2
+ dh2 := uint64(dr.Dy()) * 2
+ sw := uint64(sr.Dx())
+ sh := uint64(sr.Dy())
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (2*uint64(dy) + 1) * sh / dh2
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ sx := (2*uint64(dx) + 1) * sw / dw2
+ pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx), smp.Y+sr.Min.Y+int(sy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ }
+ if dstMask != nil {
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ pa1 := 0xffff - ma
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ } else {
+ dstColorRGBA64.R = uint16(pr)
+ dstColorRGBA64.G = uint16(pg)
+ dstColorRGBA64.B = uint16(pb)
+ dstColorRGBA64.A = uint16(pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
+ pr := uint32(src.Pix[pi]) * 0x101
+ out := uint8(pr >> 8)
+ dst.Pix[d+0] = out
+ dst.Pix[d+1] = out
+ dst.Pix[d+2] = out
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ pa := uint32(src.Pix[pi+3]) * 0x101
+ pr := uint32(src.Pix[pi+0]) * pa / 0xff
+ pg := uint32(src.Pix[pi+1]) * pa / 0xff
+ pb := uint32(src.Pix[pi+2]) * pa / 0xff
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ pa := uint32(src.Pix[pi+3]) * 0x101
+ pr := uint32(src.Pix[pi+0]) * pa / 0xff
+ pg := uint32(src.Pix[pi+1]) * pa / 0xff
+ pb := uint32(src.Pix[pi+2]) * pa / 0xff
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ pr := uint32(src.Pix[pi+0]) * 0x101
+ pg := uint32(src.Pix[pi+1]) * 0x101
+ pb := uint32(src.Pix[pi+2]) * 0x101
+ pa := uint32(src.Pix[pi+3]) * 0x101
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ pr := uint32(src.Pix[pi+0]) * 0x101
+ pg := uint32(src.Pix[pi+1]) * 0x101
+ pb := uint32(src.Pix[pi+2]) * 0x101
+ pa := uint32(src.Pix[pi+3]) * 0x101
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ pj := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pr := (pyy1 + 91881*pcr1) >> 8
+ pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pb := (pyy1 + 116130*pcb1) >> 8
+ if pr < 0 {
+ pr = 0
+ } else if pr > 0xffff {
+ pr = 0xffff
+ }
+ if pg < 0 {
+ pg = 0
+ } else if pg > 0xffff {
+ pg = 0xffff
+ }
+ if pb < 0 {
+ pb = 0
+ } else if pb > 0xffff {
+ pb = 0xffff
+ }
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ pj := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pr := (pyy1 + 91881*pcr1) >> 8
+ pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pb := (pyy1 + 116130*pcb1) >> 8
+ if pr < 0 {
+ pr = 0
+ } else if pr > 0xffff {
+ pr = 0xffff
+ }
+ if pg < 0 {
+ pg = 0
+ } else if pg > 0xffff {
+ pg = 0xffff
+ }
+ if pb < 0 {
+ pb = 0
+ } else if pb > 0xffff {
+ pb = 0xffff
+ }
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pr := (pyy1 + 91881*pcr1) >> 8
+ pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pb := (pyy1 + 116130*pcb1) >> 8
+ if pr < 0 {
+ pr = 0
+ } else if pr > 0xffff {
+ pr = 0xffff
+ }
+ if pg < 0 {
+ pg = 0
+ } else if pg > 0xffff {
+ pg = 0xffff
+ }
+ if pb < 0 {
+ pb = 0
+ } else if pb > 0xffff {
+ pb = 0xffff
+ }
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pr := (pyy1 + 91881*pcr1) >> 8
+ pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pb := (pyy1 + 116130*pcb1) >> 8
+ if pr < 0 {
+ pr = 0
+ } else if pr > 0xffff {
+ pr = 0xffff
+ }
+ if pg < 0 {
+ pg = 0
+ } else if pg > 0xffff {
+ pg = 0xffff
+ }
+ if pb < 0 {
+ pb = 0
+ } else if pb > 0xffff {
+ pb = 0xffff
+ }
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (nnInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ }
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ if dstMask != nil {
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ }
+ pa1 := 0xffff - pa
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+}
+
+func (nnInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ }
+ if dstMask != nil {
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ pa1 := 0xffff - ma
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ } else {
+ dstColorRGBA64.R = uint16(pr)
+ dstColorRGBA64.G = uint16(pg)
+ dstColorRGBA64.B = uint16(pb)
+ dstColorRGBA64.A = uint16(pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+ }
+}
+
+func (z ablInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ // Try to simplify a Scale to a Copy when DstMask is not specified.
+ // If DstMask is not nil, Copy will call Scale back with same dr and sr, and cause stack overflow.
+ if dr.Size() == sr.Size() && (opts == nil || opts.DstMask == nil) {
+ Copy(dst, dr.Min, src, sr, op, opts)
+ return
+ }
+
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
+ switch op {
+ case Over:
+ z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
+ case Src:
+ z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
+ }
+ } else if _, ok := src.(*image.Uniform); ok {
+ Draw(dst, dr, src, src.Bounds().Min, op)
+ } else {
+ switch op {
+ case Over:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.NRGBA:
+ z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr, &o)
+ case *image.RGBA:
+ z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr, &o)
+ default:
+ z.scale_RGBA_Image_Over(dst, dr, adr, src, sr, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
+ }
+ }
+ case Src:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.Gray:
+ z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr, &o)
+ case *image.NRGBA:
+ z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr, &o)
+ case *image.RGBA:
+ z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr, &o)
+ case *image.YCbCr:
+ switch src.SubsampleRatio {
+ default:
+ z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
+ case image.YCbCrSubsampleRatio444:
+ z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr, &o)
+ case image.YCbCrSubsampleRatio422:
+ z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr, &o)
+ case image.YCbCrSubsampleRatio420:
+ z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr, &o)
+ case image.YCbCrSubsampleRatio440:
+ z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr, &o)
+ }
+ default:
+ z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
+ }
+ }
+ }
+ }
+}
+
+func (z ablInterpolator) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ // Try to simplify a Transform to a Copy.
+ if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 {
+ dx := int(s2d[2])
+ dy := int(s2d[5])
+ if float64(dx) == s2d[2] && float64(dy) == s2d[5] {
+ Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts)
+ return
+ }
+ }
+
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ dr := transformRect(&s2d, &sr)
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+
+ d2s := invert(&s2d)
+ // bias is a translation of the mapping from dst coordinates to src
+ // coordinates such that the latter temporarily have non-negative X
+ // and Y coordinates. This allows us to write int(f) instead of
+ // int(math.Floor(f)), since "round to zero" and "round down" are
+ // equivalent when f >= 0, but the former is much cheaper. The X--
+ // and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
+ // adjustment.
+ bias := transformRect(&d2s, &adr).Min
+ bias.X--
+ bias.Y--
+ d2s[2] -= float64(bias.X)
+ d2s[5] -= float64(bias.Y)
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
+ switch op {
+ case Over:
+ z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case Src:
+ z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ } else if u, ok := src.(*image.Uniform); ok {
+ transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
+ } else {
+ switch op {
+ case Over:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.NRGBA:
+ z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case *image.RGBA:
+ z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ default:
+ z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ }
+ case Src:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.Gray:
+ z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case *image.NRGBA:
+ z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case *image.RGBA:
+ z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case *image.YCbCr:
+ switch src.SubsampleRatio {
+ default:
+ z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case image.YCbCrSubsampleRatio444:
+ z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case image.YCbCrSubsampleRatio422:
+ z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case image.YCbCrSubsampleRatio420:
+ z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ case image.YCbCrSubsampleRatio440:
+ z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ default:
+ z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
+ }
+ }
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s00ru := uint32(src.Pix[s00i]) * 0x101
+ s00r := float64(s00ru)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s10ru := uint32(src.Pix[s10i]) * 0x101
+ s10r := float64(s10ru)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s01ru := uint32(src.Pix[s01i]) * 0x101
+ s01r := float64(s01ru)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s11ru := uint32(src.Pix[s11i]) * 0x101
+ s11r := float64(s11ru)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11r = yFrac1*s10r + yFrac0*s11r
+ pr := uint32(s11r)
+ out := uint8(pr >> 8)
+ dst.Pix[d+0] = out
+ dst.Pix[d+1] = out
+ dst.Pix[d+2] = out
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
+ s00au := uint32(src.Pix[s00i+3]) * 0x101
+ s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
+ s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
+ s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
+ s10au := uint32(src.Pix[s10i+3]) * 0x101
+ s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
+ s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
+ s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
+ s01au := uint32(src.Pix[s01i+3]) * 0x101
+ s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
+ s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
+ s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
+ s11au := uint32(src.Pix[s11i+3]) * 0x101
+ s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
+ s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
+ s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
+ s00au := uint32(src.Pix[s00i+3]) * 0x101
+ s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
+ s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
+ s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
+ s10au := uint32(src.Pix[s10i+3]) * 0x101
+ s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
+ s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
+ s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
+ s01au := uint32(src.Pix[s01i+3]) * 0x101
+ s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
+ s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
+ s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
+ s11au := uint32(src.Pix[s11i+3]) * 0x101
+ s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
+ s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
+ s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
+ s00ru := uint32(src.Pix[s00i+0]) * 0x101
+ s00gu := uint32(src.Pix[s00i+1]) * 0x101
+ s00bu := uint32(src.Pix[s00i+2]) * 0x101
+ s00au := uint32(src.Pix[s00i+3]) * 0x101
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
+ s10ru := uint32(src.Pix[s10i+0]) * 0x101
+ s10gu := uint32(src.Pix[s10i+1]) * 0x101
+ s10bu := uint32(src.Pix[s10i+2]) * 0x101
+ s10au := uint32(src.Pix[s10i+3]) * 0x101
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
+ s01ru := uint32(src.Pix[s01i+0]) * 0x101
+ s01gu := uint32(src.Pix[s01i+1]) * 0x101
+ s01bu := uint32(src.Pix[s01i+2]) * 0x101
+ s01au := uint32(src.Pix[s01i+3]) * 0x101
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
+ s11ru := uint32(src.Pix[s11i+0]) * 0x101
+ s11gu := uint32(src.Pix[s11i+1]) * 0x101
+ s11bu := uint32(src.Pix[s11i+2]) * 0x101
+ s11au := uint32(src.Pix[s11i+3]) * 0x101
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
+ s00ru := uint32(src.Pix[s00i+0]) * 0x101
+ s00gu := uint32(src.Pix[s00i+1]) * 0x101
+ s00bu := uint32(src.Pix[s00i+2]) * 0x101
+ s00au := uint32(src.Pix[s00i+3]) * 0x101
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
+ s10ru := uint32(src.Pix[s10i+0]) * 0x101
+ s10gu := uint32(src.Pix[s10i+1]) * 0x101
+ s10bu := uint32(src.Pix[s10i+2]) * 0x101
+ s10au := uint32(src.Pix[s10i+3]) * 0x101
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
+ s01ru := uint32(src.Pix[s01i+0]) * 0x101
+ s01gu := uint32(src.Pix[s01i+1]) * 0x101
+ s01bu := uint32(src.Pix[s01i+2]) * 0x101
+ s01au := uint32(src.Pix[s01i+3]) * 0x101
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
+ s11ru := uint32(src.Pix[s11i+0]) * 0x101
+ s11gu := uint32(src.Pix[s11i+1]) * 0x101
+ s11bu := uint32(src.Pix[s11i+2]) * 0x101
+ s11au := uint32(src.Pix[s11i+3]) * 0x101
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s00yy1 := int(src.Y[s00i]) * 0x10101
+ s00cb1 := int(src.Cb[s00j]) - 128
+ s00cr1 := int(src.Cr[s00j]) - 128
+ s00ru := (s00yy1 + 91881*s00cr1) >> 8
+ s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
+ s00bu := (s00yy1 + 116130*s00cb1) >> 8
+ if s00ru < 0 {
+ s00ru = 0
+ } else if s00ru > 0xffff {
+ s00ru = 0xffff
+ }
+ if s00gu < 0 {
+ s00gu = 0
+ } else if s00gu > 0xffff {
+ s00gu = 0xffff
+ }
+ if s00bu < 0 {
+ s00bu = 0
+ } else if s00bu > 0xffff {
+ s00bu = 0xffff
+ }
+
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s10yy1 := int(src.Y[s10i]) * 0x10101
+ s10cb1 := int(src.Cb[s10j]) - 128
+ s10cr1 := int(src.Cr[s10j]) - 128
+ s10ru := (s10yy1 + 91881*s10cr1) >> 8
+ s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
+ s10bu := (s10yy1 + 116130*s10cb1) >> 8
+ if s10ru < 0 {
+ s10ru = 0
+ } else if s10ru > 0xffff {
+ s10ru = 0xffff
+ }
+ if s10gu < 0 {
+ s10gu = 0
+ } else if s10gu > 0xffff {
+ s10gu = 0xffff
+ }
+ if s10bu < 0 {
+ s10bu = 0
+ } else if s10bu > 0xffff {
+ s10bu = 0xffff
+ }
+
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s01yy1 := int(src.Y[s01i]) * 0x10101
+ s01cb1 := int(src.Cb[s01j]) - 128
+ s01cr1 := int(src.Cr[s01j]) - 128
+ s01ru := (s01yy1 + 91881*s01cr1) >> 8
+ s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
+ s01bu := (s01yy1 + 116130*s01cb1) >> 8
+ if s01ru < 0 {
+ s01ru = 0
+ } else if s01ru > 0xffff {
+ s01ru = 0xffff
+ }
+ if s01gu < 0 {
+ s01gu = 0
+ } else if s01gu > 0xffff {
+ s01gu = 0xffff
+ }
+ if s01bu < 0 {
+ s01bu = 0
+ } else if s01bu > 0xffff {
+ s01bu = 0xffff
+ }
+
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s11yy1 := int(src.Y[s11i]) * 0x10101
+ s11cb1 := int(src.Cb[s11j]) - 128
+ s11cr1 := int(src.Cr[s11j]) - 128
+ s11ru := (s11yy1 + 91881*s11cr1) >> 8
+ s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
+ s11bu := (s11yy1 + 116130*s11cb1) >> 8
+ if s11ru < 0 {
+ s11ru = 0
+ } else if s11ru > 0xffff {
+ s11ru = 0xffff
+ }
+ if s11gu < 0 {
+ s11gu = 0
+ } else if s11gu > 0xffff {
+ s11gu = 0xffff
+ }
+ if s11bu < 0 {
+ s11bu = 0
+ } else if s11bu > 0xffff {
+ s11bu = 0xffff
+ }
+
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s00yy1 := int(src.Y[s00i]) * 0x10101
+ s00cb1 := int(src.Cb[s00j]) - 128
+ s00cr1 := int(src.Cr[s00j]) - 128
+ s00ru := (s00yy1 + 91881*s00cr1) >> 8
+ s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
+ s00bu := (s00yy1 + 116130*s00cb1) >> 8
+ if s00ru < 0 {
+ s00ru = 0
+ } else if s00ru > 0xffff {
+ s00ru = 0xffff
+ }
+ if s00gu < 0 {
+ s00gu = 0
+ } else if s00gu > 0xffff {
+ s00gu = 0xffff
+ }
+ if s00bu < 0 {
+ s00bu = 0
+ } else if s00bu > 0xffff {
+ s00bu = 0xffff
+ }
+
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s10yy1 := int(src.Y[s10i]) * 0x10101
+ s10cb1 := int(src.Cb[s10j]) - 128
+ s10cr1 := int(src.Cr[s10j]) - 128
+ s10ru := (s10yy1 + 91881*s10cr1) >> 8
+ s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
+ s10bu := (s10yy1 + 116130*s10cb1) >> 8
+ if s10ru < 0 {
+ s10ru = 0
+ } else if s10ru > 0xffff {
+ s10ru = 0xffff
+ }
+ if s10gu < 0 {
+ s10gu = 0
+ } else if s10gu > 0xffff {
+ s10gu = 0xffff
+ }
+ if s10bu < 0 {
+ s10bu = 0
+ } else if s10bu > 0xffff {
+ s10bu = 0xffff
+ }
+
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s01yy1 := int(src.Y[s01i]) * 0x10101
+ s01cb1 := int(src.Cb[s01j]) - 128
+ s01cr1 := int(src.Cr[s01j]) - 128
+ s01ru := (s01yy1 + 91881*s01cr1) >> 8
+ s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
+ s01bu := (s01yy1 + 116130*s01cb1) >> 8
+ if s01ru < 0 {
+ s01ru = 0
+ } else if s01ru > 0xffff {
+ s01ru = 0xffff
+ }
+ if s01gu < 0 {
+ s01gu = 0
+ } else if s01gu > 0xffff {
+ s01gu = 0xffff
+ }
+ if s01bu < 0 {
+ s01bu = 0
+ } else if s01bu > 0xffff {
+ s01bu = 0xffff
+ }
+
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s11yy1 := int(src.Y[s11i]) * 0x10101
+ s11cb1 := int(src.Cb[s11j]) - 128
+ s11cr1 := int(src.Cr[s11j]) - 128
+ s11ru := (s11yy1 + 91881*s11cr1) >> 8
+ s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
+ s11bu := (s11yy1 + 116130*s11cb1) >> 8
+ if s11ru < 0 {
+ s11ru = 0
+ } else if s11ru > 0xffff {
+ s11ru = 0xffff
+ }
+ if s11gu < 0 {
+ s11gu = 0
+ } else if s11gu > 0xffff {
+ s11gu = 0xffff
+ }
+ if s11bu < 0 {
+ s11bu = 0
+ } else if s11bu > 0xffff {
+ s11bu = 0xffff
+ }
+
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s00yy1 := int(src.Y[s00i]) * 0x10101
+ s00cb1 := int(src.Cb[s00j]) - 128
+ s00cr1 := int(src.Cr[s00j]) - 128
+ s00ru := (s00yy1 + 91881*s00cr1) >> 8
+ s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
+ s00bu := (s00yy1 + 116130*s00cb1) >> 8
+ if s00ru < 0 {
+ s00ru = 0
+ } else if s00ru > 0xffff {
+ s00ru = 0xffff
+ }
+ if s00gu < 0 {
+ s00gu = 0
+ } else if s00gu > 0xffff {
+ s00gu = 0xffff
+ }
+ if s00bu < 0 {
+ s00bu = 0
+ } else if s00bu > 0xffff {
+ s00bu = 0xffff
+ }
+
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s10yy1 := int(src.Y[s10i]) * 0x10101
+ s10cb1 := int(src.Cb[s10j]) - 128
+ s10cr1 := int(src.Cr[s10j]) - 128
+ s10ru := (s10yy1 + 91881*s10cr1) >> 8
+ s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
+ s10bu := (s10yy1 + 116130*s10cb1) >> 8
+ if s10ru < 0 {
+ s10ru = 0
+ } else if s10ru > 0xffff {
+ s10ru = 0xffff
+ }
+ if s10gu < 0 {
+ s10gu = 0
+ } else if s10gu > 0xffff {
+ s10gu = 0xffff
+ }
+ if s10bu < 0 {
+ s10bu = 0
+ } else if s10bu > 0xffff {
+ s10bu = 0xffff
+ }
+
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s01yy1 := int(src.Y[s01i]) * 0x10101
+ s01cb1 := int(src.Cb[s01j]) - 128
+ s01cr1 := int(src.Cr[s01j]) - 128
+ s01ru := (s01yy1 + 91881*s01cr1) >> 8
+ s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
+ s01bu := (s01yy1 + 116130*s01cb1) >> 8
+ if s01ru < 0 {
+ s01ru = 0
+ } else if s01ru > 0xffff {
+ s01ru = 0xffff
+ }
+ if s01gu < 0 {
+ s01gu = 0
+ } else if s01gu > 0xffff {
+ s01gu = 0xffff
+ }
+ if s01bu < 0 {
+ s01bu = 0
+ } else if s01bu > 0xffff {
+ s01bu = 0xffff
+ }
+
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s11yy1 := int(src.Y[s11i]) * 0x10101
+ s11cb1 := int(src.Cb[s11j]) - 128
+ s11cr1 := int(src.Cr[s11j]) - 128
+ s11ru := (s11yy1 + 91881*s11cr1) >> 8
+ s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
+ s11bu := (s11yy1 + 116130*s11cb1) >> 8
+ if s11ru < 0 {
+ s11ru = 0
+ } else if s11ru > 0xffff {
+ s11ru = 0xffff
+ }
+ if s11gu < 0 {
+ s11gu = 0
+ } else if s11gu > 0xffff {
+ s11gu = 0xffff
+ }
+ if s11bu < 0 {
+ s11bu = 0
+ } else if s11bu > 0xffff {
+ s11bu = 0xffff
+ }
+
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s00yy1 := int(src.Y[s00i]) * 0x10101
+ s00cb1 := int(src.Cb[s00j]) - 128
+ s00cr1 := int(src.Cr[s00j]) - 128
+ s00ru := (s00yy1 + 91881*s00cr1) >> 8
+ s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
+ s00bu := (s00yy1 + 116130*s00cb1) >> 8
+ if s00ru < 0 {
+ s00ru = 0
+ } else if s00ru > 0xffff {
+ s00ru = 0xffff
+ }
+ if s00gu < 0 {
+ s00gu = 0
+ } else if s00gu > 0xffff {
+ s00gu = 0xffff
+ }
+ if s00bu < 0 {
+ s00bu = 0
+ } else if s00bu > 0xffff {
+ s00bu = 0xffff
+ }
+
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s10yy1 := int(src.Y[s10i]) * 0x10101
+ s10cb1 := int(src.Cb[s10j]) - 128
+ s10cr1 := int(src.Cr[s10j]) - 128
+ s10ru := (s10yy1 + 91881*s10cr1) >> 8
+ s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
+ s10bu := (s10yy1 + 116130*s10cb1) >> 8
+ if s10ru < 0 {
+ s10ru = 0
+ } else if s10ru > 0xffff {
+ s10ru = 0xffff
+ }
+ if s10gu < 0 {
+ s10gu = 0
+ } else if s10gu > 0xffff {
+ s10gu = 0xffff
+ }
+ if s10bu < 0 {
+ s10bu = 0
+ } else if s10bu > 0xffff {
+ s10bu = 0xffff
+ }
+
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+ s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s01yy1 := int(src.Y[s01i]) * 0x10101
+ s01cb1 := int(src.Cb[s01j]) - 128
+ s01cr1 := int(src.Cr[s01j]) - 128
+ s01ru := (s01yy1 + 91881*s01cr1) >> 8
+ s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
+ s01bu := (s01yy1 + 116130*s01cb1) >> 8
+ if s01ru < 0 {
+ s01ru = 0
+ } else if s01ru > 0xffff {
+ s01ru = 0xffff
+ }
+ if s01gu < 0 {
+ s01gu = 0
+ } else if s01gu > 0xffff {
+ s01gu = 0xffff
+ }
+ if s01bu < 0 {
+ s01bu = 0
+ } else if s01bu > 0xffff {
+ s01bu = 0xffff
+ }
+
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+ s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s11yy1 := int(src.Y[s11i]) * 0x10101
+ s11cb1 := int(src.Cb[s11j]) - 128
+ s11cr1 := int(src.Cr[s11j]) - 128
+ s11ru := (s11yy1 + 91881*s11cr1) >> 8
+ s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
+ s11bu := (s11yy1 + 116130*s11cb1) >> 8
+ if s11ru < 0 {
+ s11ru = 0
+ } else if s11ru > 0xffff {
+ s11ru = 0xffff
+ }
+ if s11gu < 0 {
+ s11gu = 0
+ } else if s11gu > 0xffff {
+ s11gu = 0xffff
+ }
+ if s11bu < 0 {
+ s11bu = 0
+ } else if s11bu > 0xffff {
+ s11bu = 0xffff
+ }
+
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy0)).RGBA()
+ s00ru = s00ru * ma / 0xffff
+ s00gu = s00gu * ma / 0xffff
+ s00bu = s00bu * ma / 0xffff
+ s00au = s00au * ma / 0xffff
+ }
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy0)).RGBA()
+ s10ru = s10ru * ma / 0xffff
+ s10gu = s10gu * ma / 0xffff
+ s10bu = s10bu * ma / 0xffff
+ s10au = s10au * ma / 0xffff
+ }
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy1)).RGBA()
+ s01ru = s01ru * ma / 0xffff
+ s01gu = s01gu * ma / 0xffff
+ s01bu = s01bu * ma / 0xffff
+ s01au = s01au * ma / 0xffff
+ }
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy1)).RGBA()
+ s11ru = s11ru * ma / 0xffff
+ s11gu = s11gu * ma / 0xffff
+ s11bu = s11bu * ma / 0xffff
+ s11au = s11au * ma / 0xffff
+ }
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ if dstMask != nil {
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ }
+ pa1 := 0xffff - pa
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+}
+
+func (ablInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
+ sw := int32(sr.Dx())
+ sh := int32(sr.Dy())
+ yscale := float64(sh) / float64(dr.Dy())
+ xscale := float64(sw) / float64(dr.Dx())
+ swMinus1, shMinus1 := sw-1, sh-1
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ sy := (float64(dy)+0.5)*yscale - 0.5
+ // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
+ // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
+ // sx, below.
+ sy0 := int32(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy1 := sy0 + 1
+ if sy < 0 {
+ sy0, sy1 = 0, 0
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 > shMinus1 {
+ sy0, sy1 = shMinus1, shMinus1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ sx := (float64(dx)+0.5)*xscale - 0.5
+ sx0 := int32(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx1 := sx0 + 1
+ if sx < 0 {
+ sx0, sx1 = 0, 0
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 > swMinus1 {
+ sx0, sx1 = swMinus1, swMinus1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy0)).RGBA()
+ s00ru = s00ru * ma / 0xffff
+ s00gu = s00gu * ma / 0xffff
+ s00bu = s00bu * ma / 0xffff
+ s00au = s00au * ma / 0xffff
+ }
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy0)).RGBA()
+ s10ru = s10ru * ma / 0xffff
+ s10gu = s10gu * ma / 0xffff
+ s10bu = s10bu * ma / 0xffff
+ s10au = s10au * ma / 0xffff
+ }
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy1)).RGBA()
+ s01ru = s01ru * ma / 0xffff
+ s01gu = s01gu * ma / 0xffff
+ s01bu = s01bu * ma / 0xffff
+ s01au = s01au * ma / 0xffff
+ }
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy1)).RGBA()
+ s11ru = s11ru * ma / 0xffff
+ s11gu = s11gu * ma / 0xffff
+ s11bu = s11bu * ma / 0xffff
+ s11au = s11au * ma / 0xffff
+ }
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ if dstMask != nil {
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ pa1 := 0xffff - ma
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ } else {
+ dstColorRGBA64.R = uint16(pr)
+ dstColorRGBA64.G = uint16(pg)
+ dstColorRGBA64.B = uint16(pb)
+ dstColorRGBA64.A = uint16(pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
+ s00ru := uint32(src.Pix[s00i]) * 0x101
+ s00r := float64(s00ru)
+ s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X)
+ s10ru := uint32(src.Pix[s10i]) * 0x101
+ s10r := float64(s10ru)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
+ s01ru := uint32(src.Pix[s01i]) * 0x101
+ s01r := float64(s01ru)
+ s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X)
+ s11ru := uint32(src.Pix[s11i]) * 0x101
+ s11r := float64(s11ru)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11r = yFrac1*s10r + yFrac0*s11r
+ pr := uint32(s11r)
+ out := uint8(pr >> 8)
+ dst.Pix[d+0] = out
+ dst.Pix[d+1] = out
+ dst.Pix[d+2] = out
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ s00au := uint32(src.Pix[s00i+3]) * 0x101
+ s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
+ s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
+ s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
+ s10au := uint32(src.Pix[s10i+3]) * 0x101
+ s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
+ s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
+ s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ s01au := uint32(src.Pix[s01i+3]) * 0x101
+ s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
+ s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
+ s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
+ s11au := uint32(src.Pix[s11i+3]) * 0x101
+ s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
+ s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
+ s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ s00au := uint32(src.Pix[s00i+3]) * 0x101
+ s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
+ s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
+ s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
+ s10au := uint32(src.Pix[s10i+3]) * 0x101
+ s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
+ s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
+ s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ s01au := uint32(src.Pix[s01i+3]) * 0x101
+ s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
+ s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
+ s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
+ s11au := uint32(src.Pix[s11i+3]) * 0x101
+ s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
+ s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
+ s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ s00ru := uint32(src.Pix[s00i+0]) * 0x101
+ s00gu := uint32(src.Pix[s00i+1]) * 0x101
+ s00bu := uint32(src.Pix[s00i+2]) * 0x101
+ s00au := uint32(src.Pix[s00i+3]) * 0x101
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
+ s10ru := uint32(src.Pix[s10i+0]) * 0x101
+ s10gu := uint32(src.Pix[s10i+1]) * 0x101
+ s10bu := uint32(src.Pix[s10i+2]) * 0x101
+ s10au := uint32(src.Pix[s10i+3]) * 0x101
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ s01ru := uint32(src.Pix[s01i+0]) * 0x101
+ s01gu := uint32(src.Pix[s01i+1]) * 0x101
+ s01bu := uint32(src.Pix[s01i+2]) * 0x101
+ s01au := uint32(src.Pix[s01i+3]) * 0x101
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
+ s11ru := uint32(src.Pix[s11i+0]) * 0x101
+ s11gu := uint32(src.Pix[s11i+1]) * 0x101
+ s11bu := uint32(src.Pix[s11i+2]) * 0x101
+ s11au := uint32(src.Pix[s11i+3]) * 0x101
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ s00ru := uint32(src.Pix[s00i+0]) * 0x101
+ s00gu := uint32(src.Pix[s00i+1]) * 0x101
+ s00bu := uint32(src.Pix[s00i+2]) * 0x101
+ s00au := uint32(src.Pix[s00i+3]) * 0x101
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
+ s10ru := uint32(src.Pix[s10i+0]) * 0x101
+ s10gu := uint32(src.Pix[s10i+1]) * 0x101
+ s10bu := uint32(src.Pix[s10i+2]) * 0x101
+ s10au := uint32(src.Pix[s10i+3]) * 0x101
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
+ s01ru := uint32(src.Pix[s01i+0]) * 0x101
+ s01gu := uint32(src.Pix[s01i+1]) * 0x101
+ s01bu := uint32(src.Pix[s01i+2]) * 0x101
+ s01au := uint32(src.Pix[s01i+3]) * 0x101
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
+ s11ru := uint32(src.Pix[s11i+0]) * 0x101
+ s11gu := uint32(src.Pix[s11i+1]) * 0x101
+ s11bu := uint32(src.Pix[s11i+2]) * 0x101
+ s11au := uint32(src.Pix[s11i+3]) * 0x101
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ s00j := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s00yy1 := int(src.Y[s00i]) * 0x10101
+ s00cb1 := int(src.Cb[s00j]) - 128
+ s00cr1 := int(src.Cr[s00j]) - 128
+ s00ru := (s00yy1 + 91881*s00cr1) >> 8
+ s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
+ s00bu := (s00yy1 + 116130*s00cb1) >> 8
+ if s00ru < 0 {
+ s00ru = 0
+ } else if s00ru > 0xffff {
+ s00ru = 0xffff
+ }
+ if s00gu < 0 {
+ s00gu = 0
+ } else if s00gu > 0xffff {
+ s00gu = 0xffff
+ }
+ if s00bu < 0 {
+ s00bu = 0
+ } else if s00bu > 0xffff {
+ s00bu = 0xffff
+ }
+
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
+ s10j := (sy0-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s10yy1 := int(src.Y[s10i]) * 0x10101
+ s10cb1 := int(src.Cb[s10j]) - 128
+ s10cr1 := int(src.Cr[s10j]) - 128
+ s10ru := (s10yy1 + 91881*s10cr1) >> 8
+ s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
+ s10bu := (s10yy1 + 116130*s10cb1) >> 8
+ if s10ru < 0 {
+ s10ru = 0
+ } else if s10ru > 0xffff {
+ s10ru = 0xffff
+ }
+ if s10gu < 0 {
+ s10gu = 0
+ } else if s10gu > 0xffff {
+ s10gu = 0xffff
+ }
+ if s10bu < 0 {
+ s10bu = 0
+ } else if s10bu > 0xffff {
+ s10bu = 0xffff
+ }
+
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ s01j := (sy1-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s01yy1 := int(src.Y[s01i]) * 0x10101
+ s01cb1 := int(src.Cb[s01j]) - 128
+ s01cr1 := int(src.Cr[s01j]) - 128
+ s01ru := (s01yy1 + 91881*s01cr1) >> 8
+ s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
+ s01bu := (s01yy1 + 116130*s01cb1) >> 8
+ if s01ru < 0 {
+ s01ru = 0
+ } else if s01ru > 0xffff {
+ s01ru = 0xffff
+ }
+ if s01gu < 0 {
+ s01gu = 0
+ } else if s01gu > 0xffff {
+ s01gu = 0xffff
+ }
+ if s01bu < 0 {
+ s01bu = 0
+ } else if s01bu > 0xffff {
+ s01bu = 0xffff
+ }
+
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
+ s11j := (sy1-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s11yy1 := int(src.Y[s11i]) * 0x10101
+ s11cb1 := int(src.Cb[s11j]) - 128
+ s11cr1 := int(src.Cr[s11j]) - 128
+ s11ru := (s11yy1 + 91881*s11cr1) >> 8
+ s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
+ s11bu := (s11yy1 + 116130*s11cb1) >> 8
+ if s11ru < 0 {
+ s11ru = 0
+ } else if s11ru > 0xffff {
+ s11ru = 0xffff
+ }
+ if s11gu < 0 {
+ s11gu = 0
+ } else if s11gu > 0xffff {
+ s11gu = 0xffff
+ }
+ if s11bu < 0 {
+ s11bu = 0
+ } else if s11bu > 0xffff {
+ s11bu = 0xffff
+ }
+
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ s00j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s00yy1 := int(src.Y[s00i]) * 0x10101
+ s00cb1 := int(src.Cb[s00j]) - 128
+ s00cr1 := int(src.Cr[s00j]) - 128
+ s00ru := (s00yy1 + 91881*s00cr1) >> 8
+ s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
+ s00bu := (s00yy1 + 116130*s00cb1) >> 8
+ if s00ru < 0 {
+ s00ru = 0
+ } else if s00ru > 0xffff {
+ s00ru = 0xffff
+ }
+ if s00gu < 0 {
+ s00gu = 0
+ } else if s00gu > 0xffff {
+ s00gu = 0xffff
+ }
+ if s00bu < 0 {
+ s00bu = 0
+ } else if s00bu > 0xffff {
+ s00bu = 0xffff
+ }
+
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
+ s10j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s10yy1 := int(src.Y[s10i]) * 0x10101
+ s10cb1 := int(src.Cb[s10j]) - 128
+ s10cr1 := int(src.Cr[s10j]) - 128
+ s10ru := (s10yy1 + 91881*s10cr1) >> 8
+ s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
+ s10bu := (s10yy1 + 116130*s10cb1) >> 8
+ if s10ru < 0 {
+ s10ru = 0
+ } else if s10ru > 0xffff {
+ s10ru = 0xffff
+ }
+ if s10gu < 0 {
+ s10gu = 0
+ } else if s10gu > 0xffff {
+ s10gu = 0xffff
+ }
+ if s10bu < 0 {
+ s10bu = 0
+ } else if s10bu > 0xffff {
+ s10bu = 0xffff
+ }
+
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ s01j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s01yy1 := int(src.Y[s01i]) * 0x10101
+ s01cb1 := int(src.Cb[s01j]) - 128
+ s01cr1 := int(src.Cr[s01j]) - 128
+ s01ru := (s01yy1 + 91881*s01cr1) >> 8
+ s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
+ s01bu := (s01yy1 + 116130*s01cb1) >> 8
+ if s01ru < 0 {
+ s01ru = 0
+ } else if s01ru > 0xffff {
+ s01ru = 0xffff
+ }
+ if s01gu < 0 {
+ s01gu = 0
+ } else if s01gu > 0xffff {
+ s01gu = 0xffff
+ }
+ if s01bu < 0 {
+ s01bu = 0
+ } else if s01bu > 0xffff {
+ s01bu = 0xffff
+ }
+
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
+ s11j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s11yy1 := int(src.Y[s11i]) * 0x10101
+ s11cb1 := int(src.Cb[s11j]) - 128
+ s11cr1 := int(src.Cr[s11j]) - 128
+ s11ru := (s11yy1 + 91881*s11cr1) >> 8
+ s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
+ s11bu := (s11yy1 + 116130*s11cb1) >> 8
+ if s11ru < 0 {
+ s11ru = 0
+ } else if s11ru > 0xffff {
+ s11ru = 0xffff
+ }
+ if s11gu < 0 {
+ s11gu = 0
+ } else if s11gu > 0xffff {
+ s11gu = 0xffff
+ }
+ if s11bu < 0 {
+ s11bu = 0
+ } else if s11bu > 0xffff {
+ s11bu = 0xffff
+ }
+
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s00yy1 := int(src.Y[s00i]) * 0x10101
+ s00cb1 := int(src.Cb[s00j]) - 128
+ s00cr1 := int(src.Cr[s00j]) - 128
+ s00ru := (s00yy1 + 91881*s00cr1) >> 8
+ s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
+ s00bu := (s00yy1 + 116130*s00cb1) >> 8
+ if s00ru < 0 {
+ s00ru = 0
+ } else if s00ru > 0xffff {
+ s00ru = 0xffff
+ }
+ if s00gu < 0 {
+ s00gu = 0
+ } else if s00gu > 0xffff {
+ s00gu = 0xffff
+ }
+ if s00bu < 0 {
+ s00bu = 0
+ } else if s00bu > 0xffff {
+ s00bu = 0xffff
+ }
+
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
+ s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s10yy1 := int(src.Y[s10i]) * 0x10101
+ s10cb1 := int(src.Cb[s10j]) - 128
+ s10cr1 := int(src.Cr[s10j]) - 128
+ s10ru := (s10yy1 + 91881*s10cr1) >> 8
+ s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
+ s10bu := (s10yy1 + 116130*s10cb1) >> 8
+ if s10ru < 0 {
+ s10ru = 0
+ } else if s10ru > 0xffff {
+ s10ru = 0xffff
+ }
+ if s10gu < 0 {
+ s10gu = 0
+ } else if s10gu > 0xffff {
+ s10gu = 0xffff
+ }
+ if s10bu < 0 {
+ s10bu = 0
+ } else if s10bu > 0xffff {
+ s10bu = 0xffff
+ }
+
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s01yy1 := int(src.Y[s01i]) * 0x10101
+ s01cb1 := int(src.Cb[s01j]) - 128
+ s01cr1 := int(src.Cr[s01j]) - 128
+ s01ru := (s01yy1 + 91881*s01cr1) >> 8
+ s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
+ s01bu := (s01yy1 + 116130*s01cb1) >> 8
+ if s01ru < 0 {
+ s01ru = 0
+ } else if s01ru > 0xffff {
+ s01ru = 0xffff
+ }
+ if s01gu < 0 {
+ s01gu = 0
+ } else if s01gu > 0xffff {
+ s01gu = 0xffff
+ }
+ if s01bu < 0 {
+ s01bu = 0
+ } else if s01bu > 0xffff {
+ s01bu = 0xffff
+ }
+
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
+ s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s11yy1 := int(src.Y[s11i]) * 0x10101
+ s11cb1 := int(src.Cb[s11j]) - 128
+ s11cr1 := int(src.Cr[s11j]) - 128
+ s11ru := (s11yy1 + 91881*s11cr1) >> 8
+ s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
+ s11bu := (s11yy1 + 116130*s11cb1) >> 8
+ if s11ru < 0 {
+ s11ru = 0
+ } else if s11ru > 0xffff {
+ s11ru = 0xffff
+ }
+ if s11gu < 0 {
+ s11gu = 0
+ } else if s11gu > 0xffff {
+ s11gu = 0xffff
+ }
+ if s11bu < 0 {
+ s11bu = 0
+ } else if s11bu > 0xffff {
+ s11bu = 0xffff
+ }
+
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s00yy1 := int(src.Y[s00i]) * 0x10101
+ s00cb1 := int(src.Cb[s00j]) - 128
+ s00cr1 := int(src.Cr[s00j]) - 128
+ s00ru := (s00yy1 + 91881*s00cr1) >> 8
+ s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
+ s00bu := (s00yy1 + 116130*s00cb1) >> 8
+ if s00ru < 0 {
+ s00ru = 0
+ } else if s00ru > 0xffff {
+ s00ru = 0xffff
+ }
+ if s00gu < 0 {
+ s00gu = 0
+ } else if s00gu > 0xffff {
+ s00gu = 0xffff
+ }
+ if s00bu < 0 {
+ s00bu = 0
+ } else if s00bu > 0xffff {
+ s00bu = 0xffff
+ }
+
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
+ s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s10yy1 := int(src.Y[s10i]) * 0x10101
+ s10cb1 := int(src.Cb[s10j]) - 128
+ s10cr1 := int(src.Cr[s10j]) - 128
+ s10ru := (s10yy1 + 91881*s10cr1) >> 8
+ s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
+ s10bu := (s10yy1 + 116130*s10cb1) >> 8
+ if s10ru < 0 {
+ s10ru = 0
+ } else if s10ru > 0xffff {
+ s10ru = 0xffff
+ }
+ if s10gu < 0 {
+ s10gu = 0
+ } else if s10gu > 0xffff {
+ s10gu = 0xffff
+ }
+ if s10bu < 0 {
+ s10bu = 0
+ } else if s10bu > 0xffff {
+ s10bu = 0xffff
+ }
+
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
+ s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s01yy1 := int(src.Y[s01i]) * 0x10101
+ s01cb1 := int(src.Cb[s01j]) - 128
+ s01cr1 := int(src.Cr[s01j]) - 128
+ s01ru := (s01yy1 + 91881*s01cr1) >> 8
+ s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
+ s01bu := (s01yy1 + 116130*s01cb1) >> 8
+ if s01ru < 0 {
+ s01ru = 0
+ } else if s01ru > 0xffff {
+ s01ru = 0xffff
+ }
+ if s01gu < 0 {
+ s01gu = 0
+ } else if s01gu > 0xffff {
+ s01gu = 0xffff
+ }
+ if s01bu < 0 {
+ s01bu = 0
+ } else if s01bu > 0xffff {
+ s01bu = 0xffff
+ }
+
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
+ s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ s11yy1 := int(src.Y[s11i]) * 0x10101
+ s11cb1 := int(src.Cb[s11j]) - 128
+ s11cr1 := int(src.Cr[s11j]) - 128
+ s11ru := (s11yy1 + 91881*s11cr1) >> 8
+ s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
+ s11bu := (s11yy1 + 116130*s11cb1) >> 8
+ if s11ru < 0 {
+ s11ru = 0
+ } else if s11ru > 0xffff {
+ s11ru = 0xffff
+ }
+ if s11gu < 0 {
+ s11gu = 0
+ } else if s11gu > 0xffff {
+ s11gu = 0xffff
+ }
+ if s11bu < 0 {
+ s11bu = 0
+ } else if s11bu > 0xffff {
+ s11bu = 0xffff
+ }
+
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ pa1 := (0xffff - pa) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ dst.Pix[d+0] = uint8(pr >> 8)
+ dst.Pix[d+1] = uint8(pg >> 8)
+ dst.Pix[d+2] = uint8(pb >> 8)
+ dst.Pix[d+3] = uint8(pa >> 8)
+ }
+ }
+}
+
+func (ablInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
+ s00ru = s00ru * ma / 0xffff
+ s00gu = s00gu * ma / 0xffff
+ s00bu = s00bu * ma / 0xffff
+ s00au = s00au * ma / 0xffff
+ }
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy0).RGBA()
+ s10ru = s10ru * ma / 0xffff
+ s10gu = s10gu * ma / 0xffff
+ s10bu = s10bu * ma / 0xffff
+ s10au = s10au * ma / 0xffff
+ }
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy1).RGBA()
+ s01ru = s01ru * ma / 0xffff
+ s01gu = s01gu * ma / 0xffff
+ s01bu = s01bu * ma / 0xffff
+ s01au = s01au * ma / 0xffff
+ }
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy1).RGBA()
+ s11ru = s11ru * ma / 0xffff
+ s11gu = s11gu * ma / 0xffff
+ s11bu = s11bu * ma / 0xffff
+ s11au = s11au * ma / 0xffff
+ }
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ if dstMask != nil {
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ }
+ pa1 := 0xffff - pa
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+}
+
+func (ablInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ sx -= 0.5
+ sx0 := int(sx)
+ xFrac0 := sx - float64(sx0)
+ xFrac1 := 1 - xFrac0
+ sx0 += bias.X
+ sx1 := sx0 + 1
+ if sx0 < sr.Min.X {
+ sx0, sx1 = sr.Min.X, sr.Min.X
+ xFrac0, xFrac1 = 0, 1
+ } else if sx1 >= sr.Max.X {
+ sx0, sx1 = sr.Max.X-1, sr.Max.X-1
+ xFrac0, xFrac1 = 1, 0
+ }
+
+ sy -= 0.5
+ sy0 := int(sy)
+ yFrac0 := sy - float64(sy0)
+ yFrac1 := 1 - yFrac0
+ sy0 += bias.Y
+ sy1 := sy0 + 1
+ if sy0 < sr.Min.Y {
+ sy0, sy1 = sr.Min.Y, sr.Min.Y
+ yFrac0, yFrac1 = 0, 1
+ } else if sy1 >= sr.Max.Y {
+ sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
+ yFrac0, yFrac1 = 1, 0
+ }
+
+ s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
+ s00ru = s00ru * ma / 0xffff
+ s00gu = s00gu * ma / 0xffff
+ s00bu = s00bu * ma / 0xffff
+ s00au = s00au * ma / 0xffff
+ }
+ s00r := float64(s00ru)
+ s00g := float64(s00gu)
+ s00b := float64(s00bu)
+ s00a := float64(s00au)
+ s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy0).RGBA()
+ s10ru = s10ru * ma / 0xffff
+ s10gu = s10gu * ma / 0xffff
+ s10bu = s10bu * ma / 0xffff
+ s10au = s10au * ma / 0xffff
+ }
+ s10r := float64(s10ru)
+ s10g := float64(s10gu)
+ s10b := float64(s10bu)
+ s10a := float64(s10au)
+ s10r = xFrac1*s00r + xFrac0*s10r
+ s10g = xFrac1*s00g + xFrac0*s10g
+ s10b = xFrac1*s00b + xFrac0*s10b
+ s10a = xFrac1*s00a + xFrac0*s10a
+ s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy1).RGBA()
+ s01ru = s01ru * ma / 0xffff
+ s01gu = s01gu * ma / 0xffff
+ s01bu = s01bu * ma / 0xffff
+ s01au = s01au * ma / 0xffff
+ }
+ s01r := float64(s01ru)
+ s01g := float64(s01gu)
+ s01b := float64(s01bu)
+ s01a := float64(s01au)
+ s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy1).RGBA()
+ s11ru = s11ru * ma / 0xffff
+ s11gu = s11gu * ma / 0xffff
+ s11bu = s11bu * ma / 0xffff
+ s11au = s11au * ma / 0xffff
+ }
+ s11r := float64(s11ru)
+ s11g := float64(s11gu)
+ s11b := float64(s11bu)
+ s11a := float64(s11au)
+ s11r = xFrac1*s01r + xFrac0*s11r
+ s11g = xFrac1*s01g + xFrac0*s11g
+ s11b = xFrac1*s01b + xFrac0*s11b
+ s11a = xFrac1*s01a + xFrac0*s11a
+ s11r = yFrac1*s10r + yFrac0*s11r
+ s11g = yFrac1*s10g + yFrac0*s11g
+ s11b = yFrac1*s10b + yFrac0*s11b
+ s11a = yFrac1*s10a + yFrac0*s11a
+ pr := uint32(s11r)
+ pg := uint32(s11g)
+ pb := uint32(s11b)
+ pa := uint32(s11a)
+ if dstMask != nil {
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr = pr * ma / 0xffff
+ pg = pg * ma / 0xffff
+ pb = pb * ma / 0xffff
+ pa = pa * ma / 0xffff
+ pa1 := 0xffff - ma
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ } else {
+ dstColorRGBA64.R = uint16(pr)
+ dstColorRGBA64.G = uint16(pg)
+ dstColorRGBA64.B = uint16(pb)
+ dstColorRGBA64.A = uint16(pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+ }
+}
+
+func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) {
+ z.kernel.Scale(dst, dr, src, sr, op, opts)
+ return
+ }
+
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+
+ if _, ok := src.(*image.Uniform); ok && o.DstMask == nil && o.SrcMask == nil && sr.In(src.Bounds()) {
+ Draw(dst, dr, src, src.Bounds().Min, op)
+ return
+ }
+
+ // Create a temporary buffer:
+ // scaleX distributes the source image's columns over the temporary image.
+ // scaleY distributes the temporary image's rows over the destination image.
+ var tmp [][4]float64
+ if z.pool.New != nil {
+ tmpp := z.pool.Get().(*[][4]float64)
+ defer z.pool.Put(tmpp)
+ tmp = *tmpp
+ } else {
+ tmp = z.makeTmpBuf()
+ }
+
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.SrcMask != nil || !sr.In(src.Bounds()) {
+ z.scaleX_Image(tmp, src, sr, &o)
+ } else {
+ switch src := src.(type) {
+ case *image.Gray:
+ z.scaleX_Gray(tmp, src, sr, &o)
+ case *image.NRGBA:
+ z.scaleX_NRGBA(tmp, src, sr, &o)
+ case *image.RGBA:
+ z.scaleX_RGBA(tmp, src, sr, &o)
+ case *image.YCbCr:
+ switch src.SubsampleRatio {
+ default:
+ z.scaleX_Image(tmp, src, sr, &o)
+ case image.YCbCrSubsampleRatio444:
+ z.scaleX_YCbCr444(tmp, src, sr, &o)
+ case image.YCbCrSubsampleRatio422:
+ z.scaleX_YCbCr422(tmp, src, sr, &o)
+ case image.YCbCrSubsampleRatio420:
+ z.scaleX_YCbCr420(tmp, src, sr, &o)
+ case image.YCbCrSubsampleRatio440:
+ z.scaleX_YCbCr440(tmp, src, sr, &o)
+ }
+ default:
+ z.scaleX_Image(tmp, src, sr, &o)
+ }
+ }
+
+ if o.DstMask != nil {
+ switch op {
+ case Over:
+ z.scaleY_Image_Over(dst, dr, adr, tmp, &o)
+ case Src:
+ z.scaleY_Image_Src(dst, dr, adr, tmp, &o)
+ }
+ } else {
+ switch op {
+ case Over:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ z.scaleY_RGBA_Over(dst, dr, adr, tmp, &o)
+ default:
+ z.scaleY_Image_Over(dst, dr, adr, tmp, &o)
+ }
+ case Src:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ z.scaleY_RGBA_Src(dst, dr, adr, tmp, &o)
+ default:
+ z.scaleY_Image_Src(dst, dr, adr, tmp, &o)
+ }
+ }
+ }
+}
+
+func (q *Kernel) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+
+ dr := transformRect(&s2d, &sr)
+ // adr is the affected destination pixels.
+ adr := dst.Bounds().Intersect(dr)
+ adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
+ if adr.Empty() || sr.Empty() {
+ return
+ }
+ if op == Over && o.SrcMask == nil && opaque(src) {
+ op = Src
+ }
+ d2s := invert(&s2d)
+ // bias is a translation of the mapping from dst coordinates to src
+ // coordinates such that the latter temporarily have non-negative X
+ // and Y coordinates. This allows us to write int(f) instead of
+ // int(math.Floor(f)), since "round to zero" and "round down" are
+ // equivalent when f >= 0, but the former is much cheaper. The X--
+ // and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
+ // adjustment.
+ bias := transformRect(&d2s, &adr).Min
+ bias.X--
+ bias.Y--
+ d2s[2] -= float64(bias.X)
+ d2s[5] -= float64(bias.Y)
+ // Make adr relative to dr.Min.
+ adr = adr.Sub(dr.Min)
+
+ if u, ok := src.(*image.Uniform); ok && o.DstMask != nil && o.SrcMask != nil && sr.In(src.Bounds()) {
+ transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
+ return
+ }
+
+ xscale := abs(d2s[0])
+ if s := abs(d2s[1]); xscale < s {
+ xscale = s
+ }
+ yscale := abs(d2s[3])
+ if s := abs(d2s[4]); yscale < s {
+ yscale = s
+ }
+
+ // sr is the source pixels. If it extends beyond the src bounds,
+ // we cannot use the type-specific fast paths, as they access
+ // the Pix fields directly without bounds checking.
+ //
+ // Similarly, the fast paths assume that the masks are nil.
+ if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
+ switch op {
+ case Over:
+ q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case Src:
+ q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ }
+ } else {
+ switch op {
+ case Over:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.NRGBA:
+ q.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case *image.RGBA:
+ q.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ default:
+ q.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ }
+ }
+ case Src:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ switch src := src.(type) {
+ case *image.Gray:
+ q.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case *image.NRGBA:
+ q.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case *image.RGBA:
+ q.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case *image.YCbCr:
+ switch src.SubsampleRatio {
+ default:
+ q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case image.YCbCrSubsampleRatio444:
+ q.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case image.YCbCrSubsampleRatio422:
+ q.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case image.YCbCrSubsampleRatio420:
+ q.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ case image.YCbCrSubsampleRatio440:
+ q.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ }
+ default:
+ q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ }
+ default:
+ switch src := src.(type) {
+ default:
+ q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
+ }
+ }
+ }
+ }
+}
+
+func (z *kernelScaler) scaleX_Gray(tmp [][4]float64, src *image.Gray, sr image.Rectangle, opts *Options) {
+ t := 0
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr float64
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
+ pru := uint32(src.Pix[pi]) * 0x101
+ pr += float64(pru) * c.weight
+ }
+ pr *= s.invTotalWeightFFFF
+ tmp[t] = [4]float64{
+ pr,
+ pr,
+ pr,
+ 1,
+ }
+ t++
+ }
+ }
+}
+
+func (z *kernelScaler) scaleX_NRGBA(tmp [][4]float64, src *image.NRGBA, sr image.Rectangle, opts *Options) {
+ t := 0
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr, pg, pb, pa float64
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4
+ pau := uint32(src.Pix[pi+3]) * 0x101
+ pru := uint32(src.Pix[pi+0]) * pau / 0xff
+ pgu := uint32(src.Pix[pi+1]) * pau / 0xff
+ pbu := uint32(src.Pix[pi+2]) * pau / 0xff
+ pr += float64(pru) * c.weight
+ pg += float64(pgu) * c.weight
+ pb += float64(pbu) * c.weight
+ pa += float64(pau) * c.weight
+ }
+ tmp[t] = [4]float64{
+ pr * s.invTotalWeightFFFF,
+ pg * s.invTotalWeightFFFF,
+ pb * s.invTotalWeightFFFF,
+ pa * s.invTotalWeightFFFF,
+ }
+ t++
+ }
+ }
+}
+
+func (z *kernelScaler) scaleX_RGBA(tmp [][4]float64, src *image.RGBA, sr image.Rectangle, opts *Options) {
+ t := 0
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr, pg, pb, pa float64
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4
+ pru := uint32(src.Pix[pi+0]) * 0x101
+ pgu := uint32(src.Pix[pi+1]) * 0x101
+ pbu := uint32(src.Pix[pi+2]) * 0x101
+ pau := uint32(src.Pix[pi+3]) * 0x101
+ pr += float64(pru) * c.weight
+ pg += float64(pgu) * c.weight
+ pb += float64(pbu) * c.weight
+ pa += float64(pau) * c.weight
+ }
+ tmp[t] = [4]float64{
+ pr * s.invTotalWeightFFFF,
+ pg * s.invTotalWeightFFFF,
+ pb * s.invTotalWeightFFFF,
+ pa * s.invTotalWeightFFFF,
+ }
+ t++
+ }
+ }
+}
+
+func (z *kernelScaler) scaleX_YCbCr444(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ t := 0
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr, pg, pb float64
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
+ pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pru := (pyy1 + 91881*pcr1) >> 8
+ pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pbu := (pyy1 + 116130*pcb1) >> 8
+ if pru < 0 {
+ pru = 0
+ } else if pru > 0xffff {
+ pru = 0xffff
+ }
+ if pgu < 0 {
+ pgu = 0
+ } else if pgu > 0xffff {
+ pgu = 0xffff
+ }
+ if pbu < 0 {
+ pbu = 0
+ } else if pbu > 0xffff {
+ pbu = 0xffff
+ }
+
+ pr += float64(pru) * c.weight
+ pg += float64(pgu) * c.weight
+ pb += float64(pbu) * c.weight
+ }
+ tmp[t] = [4]float64{
+ pr * s.invTotalWeightFFFF,
+ pg * s.invTotalWeightFFFF,
+ pb * s.invTotalWeightFFFF,
+ 1,
+ }
+ t++
+ }
+ }
+}
+
+func (z *kernelScaler) scaleX_YCbCr422(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ t := 0
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr, pg, pb float64
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
+ pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pru := (pyy1 + 91881*pcr1) >> 8
+ pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pbu := (pyy1 + 116130*pcb1) >> 8
+ if pru < 0 {
+ pru = 0
+ } else if pru > 0xffff {
+ pru = 0xffff
+ }
+ if pgu < 0 {
+ pgu = 0
+ } else if pgu > 0xffff {
+ pgu = 0xffff
+ }
+ if pbu < 0 {
+ pbu = 0
+ } else if pbu > 0xffff {
+ pbu = 0xffff
+ }
+
+ pr += float64(pru) * c.weight
+ pg += float64(pgu) * c.weight
+ pb += float64(pbu) * c.weight
+ }
+ tmp[t] = [4]float64{
+ pr * s.invTotalWeightFFFF,
+ pg * s.invTotalWeightFFFF,
+ pb * s.invTotalWeightFFFF,
+ 1,
+ }
+ t++
+ }
+ }
+}
+
+func (z *kernelScaler) scaleX_YCbCr420(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ t := 0
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr, pg, pb float64
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
+ pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pru := (pyy1 + 91881*pcr1) >> 8
+ pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pbu := (pyy1 + 116130*pcb1) >> 8
+ if pru < 0 {
+ pru = 0
+ } else if pru > 0xffff {
+ pru = 0xffff
+ }
+ if pgu < 0 {
+ pgu = 0
+ } else if pgu > 0xffff {
+ pgu = 0xffff
+ }
+ if pbu < 0 {
+ pbu = 0
+ } else if pbu > 0xffff {
+ pbu = 0xffff
+ }
+
+ pr += float64(pru) * c.weight
+ pg += float64(pgu) * c.weight
+ pb += float64(pbu) * c.weight
+ }
+ tmp[t] = [4]float64{
+ pr * s.invTotalWeightFFFF,
+ pg * s.invTotalWeightFFFF,
+ pb * s.invTotalWeightFFFF,
+ 1,
+ }
+ t++
+ }
+ }
+}
+
+func (z *kernelScaler) scaleX_YCbCr440(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
+ t := 0
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr, pg, pb float64
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
+ pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pru := (pyy1 + 91881*pcr1) >> 8
+ pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pbu := (pyy1 + 116130*pcb1) >> 8
+ if pru < 0 {
+ pru = 0
+ } else if pru > 0xffff {
+ pru = 0xffff
+ }
+ if pgu < 0 {
+ pgu = 0
+ } else if pgu > 0xffff {
+ pgu = 0xffff
+ }
+ if pbu < 0 {
+ pbu = 0
+ } else if pbu > 0xffff {
+ pbu = 0xffff
+ }
+
+ pr += float64(pru) * c.weight
+ pg += float64(pgu) * c.weight
+ pb += float64(pbu) * c.weight
+ }
+ tmp[t] = [4]float64{
+ pr * s.invTotalWeightFFFF,
+ pg * s.invTotalWeightFFFF,
+ pb * s.invTotalWeightFFFF,
+ 1,
+ }
+ t++
+ }
+ }
+}
+
+func (z *kernelScaler) scaleX_Image(tmp [][4]float64, src image.Image, sr image.Rectangle, opts *Options) {
+ t := 0
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ for y := int32(0); y < z.sh; y++ {
+ for _, s := range z.horizontal.sources {
+ var pr, pg, pb, pa float64
+ for _, c := range z.horizontal.contribs[s.i:s.j] {
+ pru, pgu, pbu, pau := src.At(sr.Min.X+int(c.coord), sr.Min.Y+int(y)).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(c.coord), smp.Y+sr.Min.Y+int(y)).RGBA()
+ pru = pru * ma / 0xffff
+ pgu = pgu * ma / 0xffff
+ pbu = pbu * ma / 0xffff
+ pau = pau * ma / 0xffff
+ }
+ pr += float64(pru) * c.weight
+ pg += float64(pgu) * c.weight
+ pb += float64(pbu) * c.weight
+ pa += float64(pau) * c.weight
+ }
+ tmp[t] = [4]float64{
+ pr * s.invTotalWeightFFFF,
+ pg * s.invTotalWeightFFFF,
+ pb * s.invTotalWeightFFFF,
+ pa * s.invTotalWeightFFFF,
+ }
+ t++
+ }
+ }
+}
+
+func (z *kernelScaler) scaleY_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4
+ for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
+ var pr, pg, pb, pa float64
+ for _, c := range z.vertical.contribs[s.i:s.j] {
+ p := &tmp[c.coord*z.dw+dx]
+ pr += p[0] * c.weight
+ pg += p[1] * c.weight
+ pb += p[2] * c.weight
+ pa += p[3] * c.weight
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ pr0 := uint32(ftou(pr * s.invTotalWeight))
+ pg0 := uint32(ftou(pg * s.invTotalWeight))
+ pb0 := uint32(ftou(pb * s.invTotalWeight))
+ pa0 := uint32(ftou(pa * s.invTotalWeight))
+ pa1 := (0xffff - uint32(pa0)) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
+ d += dst.Stride
+ }
+ }
+}
+
+func (z *kernelScaler) scaleY_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4
+ for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
+ var pr, pg, pb, pa float64
+ for _, c := range z.vertical.contribs[s.i:s.j] {
+ p := &tmp[c.coord*z.dw+dx]
+ pr += p[0] * c.weight
+ pg += p[1] * c.weight
+ pb += p[2] * c.weight
+ pa += p[3] * c.weight
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ dst.Pix[d+0] = uint8(ftou(pr*s.invTotalWeight) >> 8)
+ dst.Pix[d+1] = uint8(ftou(pg*s.invTotalWeight) >> 8)
+ dst.Pix[d+2] = uint8(ftou(pb*s.invTotalWeight) >> 8)
+ dst.Pix[d+3] = uint8(ftou(pa*s.invTotalWeight) >> 8)
+ d += dst.Stride
+ }
+ }
+}
+
+func (z *kernelScaler) scaleY_Image_Over(dst Image, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
+ var pr, pg, pb, pa float64
+ for _, c := range z.vertical.contribs[s.i:s.j] {
+ p := &tmp[c.coord*z.dw+dx]
+ pr += p[0] * c.weight
+ pg += p[1] * c.weight
+ pb += p[2] * c.weight
+ pa += p[3] * c.weight
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
+ pr0 := uint32(ftou(pr * s.invTotalWeight))
+ pg0 := uint32(ftou(pg * s.invTotalWeight))
+ pb0 := uint32(ftou(pb * s.invTotalWeight))
+ pa0 := uint32(ftou(pa * s.invTotalWeight))
+ if dstMask != nil {
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
+ pr0 = pr0 * ma / 0xffff
+ pg0 = pg0 * ma / 0xffff
+ pb0 = pb0 * ma / 0xffff
+ pa0 = pa0 * ma / 0xffff
+ }
+ pa1 := 0xffff - pa0
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr0)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg0)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb0)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa0)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
+ }
+ }
+}
+
+func (z *kernelScaler) scaleY_Image_Src(dst Image, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
+ var pr, pg, pb, pa float64
+ for _, c := range z.vertical.contribs[s.i:s.j] {
+ p := &tmp[c.coord*z.dw+dx]
+ pr += p[0] * c.weight
+ pg += p[1] * c.weight
+ pb += p[2] * c.weight
+ pa += p[3] * c.weight
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ if dstMask != nil {
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
+ pr := uint32(ftou(pr*s.invTotalWeight)) * ma / 0xffff
+ pg := uint32(ftou(pg*s.invTotalWeight)) * ma / 0xffff
+ pb := uint32(ftou(pb*s.invTotalWeight)) * ma / 0xffff
+ pa := uint32(ftou(pa*s.invTotalWeight)) * ma / 0xffff
+ pa1 := 0xffff - ma
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
+ } else {
+ dstColorRGBA64.R = ftou(pr * s.invTotalWeight)
+ dstColorRGBA64.G = ftou(pg * s.invTotalWeight)
+ dstColorRGBA64.B = ftou(pb * s.invTotalWeight)
+ dstColorRGBA64.A = ftou(pa * s.invTotalWeight)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
+ }
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.Stride + (kx - src.Rect.Min.X)
+ pru := uint32(src.Pix[pi]) * 0x101
+ pr += float64(pru) * w
+ }
+ }
+ }
+ }
+ out := uint8(fffftou(pr) >> 8)
+ dst.Pix[d+0] = out
+ dst.Pix[d+1] = out
+ dst.Pix[d+2] = out
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
+ pau := uint32(src.Pix[pi+3]) * 0x101
+ pru := uint32(src.Pix[pi+0]) * pau / 0xff
+ pgu := uint32(src.Pix[pi+1]) * pau / 0xff
+ pbu := uint32(src.Pix[pi+2]) * pau / 0xff
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ pa += float64(pau) * w
+ }
+ }
+ }
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ pr0 := uint32(fffftou(pr))
+ pg0 := uint32(fffftou(pg))
+ pb0 := uint32(fffftou(pb))
+ pa0 := uint32(fffftou(pa))
+ pa1 := (0xffff - uint32(pa0)) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
+ pau := uint32(src.Pix[pi+3]) * 0x101
+ pru := uint32(src.Pix[pi+0]) * pau / 0xff
+ pgu := uint32(src.Pix[pi+1]) * pau / 0xff
+ pbu := uint32(src.Pix[pi+2]) * pau / 0xff
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ pa += float64(pau) * w
+ }
+ }
+ }
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
+ dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
+ dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
+ dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
+ pru := uint32(src.Pix[pi+0]) * 0x101
+ pgu := uint32(src.Pix[pi+1]) * 0x101
+ pbu := uint32(src.Pix[pi+2]) * 0x101
+ pau := uint32(src.Pix[pi+3]) * 0x101
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ pa += float64(pau) * w
+ }
+ }
+ }
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ pr0 := uint32(fffftou(pr))
+ pg0 := uint32(fffftou(pg))
+ pb0 := uint32(fffftou(pb))
+ pa0 := uint32(fffftou(pa))
+ pa1 := (0xffff - uint32(pa0)) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
+ pru := uint32(src.Pix[pi+0]) * 0x101
+ pgu := uint32(src.Pix[pi+1]) * 0x101
+ pbu := uint32(src.Pix[pi+2]) * 0x101
+ pau := uint32(src.Pix[pi+3]) * 0x101
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ pa += float64(pau) * w
+ }
+ }
+ }
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
+ dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
+ dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
+ dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
+ pj := (ky-src.Rect.Min.Y)*src.CStride + (kx - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pru := (pyy1 + 91881*pcr1) >> 8
+ pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pbu := (pyy1 + 116130*pcb1) >> 8
+ if pru < 0 {
+ pru = 0
+ } else if pru > 0xffff {
+ pru = 0xffff
+ }
+ if pgu < 0 {
+ pgu = 0
+ } else if pgu > 0xffff {
+ pgu = 0xffff
+ }
+ if pbu < 0 {
+ pbu = 0
+ } else if pbu > 0xffff {
+ pbu = 0xffff
+ }
+
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ }
+ }
+ }
+ }
+ dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
+ dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
+ dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
+ pj := (ky-src.Rect.Min.Y)*src.CStride + ((kx)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pru := (pyy1 + 91881*pcr1) >> 8
+ pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pbu := (pyy1 + 116130*pcb1) >> 8
+ if pru < 0 {
+ pru = 0
+ } else if pru > 0xffff {
+ pru = 0xffff
+ }
+ if pgu < 0 {
+ pgu = 0
+ } else if pgu > 0xffff {
+ pgu = 0xffff
+ }
+ if pbu < 0 {
+ pbu = 0
+ } else if pbu > 0xffff {
+ pbu = 0xffff
+ }
+
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ }
+ }
+ }
+ }
+ dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
+ dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
+ dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
+ pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + ((kx)/2 - src.Rect.Min.X/2)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pru := (pyy1 + 91881*pcr1) >> 8
+ pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pbu := (pyy1 + 116130*pcb1) >> 8
+ if pru < 0 {
+ pru = 0
+ } else if pru > 0xffff {
+ pru = 0xffff
+ }
+ if pgu < 0 {
+ pgu = 0
+ } else if pgu > 0xffff {
+ pgu = 0xffff
+ }
+ if pbu < 0 {
+ pbu = 0
+ } else if pbu > 0xffff {
+ pbu = 0xffff
+ }
+
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ }
+ }
+ }
+ }
+ dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
+ dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
+ dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
+ pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + (kx - src.Rect.Min.X)
+
+ // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
+ pyy1 := int(src.Y[pi]) * 0x10101
+ pcb1 := int(src.Cb[pj]) - 128
+ pcr1 := int(src.Cr[pj]) - 128
+ pru := (pyy1 + 91881*pcr1) >> 8
+ pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
+ pbu := (pyy1 + 116130*pcb1) >> 8
+ if pru < 0 {
+ pru = 0
+ } else if pru > 0xffff {
+ pru = 0xffff
+ }
+ if pgu < 0 {
+ pgu = 0
+ } else if pgu > 0xffff {
+ pgu = 0xffff
+ }
+ if pbu < 0 {
+ pbu = 0
+ } else if pbu > 0xffff {
+ pbu = 0xffff
+ }
+
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ }
+ }
+ }
+ }
+ dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
+ dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
+ dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
+ dst.Pix[d+3] = 0xff
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ pa += float64(pau) * w
+ }
+ }
+ }
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ pr0 := uint32(fffftou(pr))
+ pg0 := uint32(fffftou(pg))
+ pb0 := uint32(fffftou(pb))
+ pa0 := uint32(fffftou(pa))
+ pa1 := (0xffff - uint32(pa0)) * 0x101
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
+ }
+ }
+}
+
+func (q *Kernel) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ pa += float64(pau) * w
+ }
+ }
+ }
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
+ dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
+ dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
+ dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
+ }
+ }
+}
+
+func (q *Kernel) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+kx, smp.Y+ky).RGBA()
+ pru = pru * ma / 0xffff
+ pgu = pgu * ma / 0xffff
+ pbu = pbu * ma / 0xffff
+ pau = pau * ma / 0xffff
+ }
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ pa += float64(pau) * w
+ }
+ }
+ }
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ pr0 := uint32(fffftou(pr))
+ pg0 := uint32(fffftou(pg))
+ pb0 := uint32(fffftou(pb))
+ pa0 := uint32(fffftou(pa))
+ if dstMask != nil {
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr0 = pr0 * ma / 0xffff
+ pg0 = pg0 * ma / 0xffff
+ pb0 = pb0 * ma / 0xffff
+ pa0 = pa0 * ma / 0xffff
+ }
+ pa1 := 0xffff - pa0
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr0)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg0)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb0)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa0)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+}
+
+func (q *Kernel) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ xHalfWidth, xKernelArgScale := q.Support, 1.0
+ if xscale > 1 {
+ xHalfWidth *= xscale
+ xKernelArgScale = 1 / xscale
+ }
+ yHalfWidth, yKernelArgScale := q.Support, 1.0
+ if yscale > 1 {
+ yHalfWidth *= yscale
+ yKernelArgScale = 1 / yscale
+ }
+
+ xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
+ yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
+
+ srcMask, smp := opts.SrcMask, opts.SrcMaskP
+ dstMask, dmp := opts.DstMask, opts.DstMaskP
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
+ sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
+ if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
+ continue
+ }
+
+ // TODO: adjust the bias so that we can use int(f) instead
+ // of math.Floor(f) and math.Ceil(f).
+ sx += float64(bias.X)
+ sx -= 0.5
+ ix := int(math.Floor(sx - xHalfWidth))
+ if ix < sr.Min.X {
+ ix = sr.Min.X
+ }
+ jx := int(math.Ceil(sx + xHalfWidth))
+ if jx > sr.Max.X {
+ jx = sr.Max.X
+ }
+
+ totalXWeight := 0.0
+ for kx := ix; kx < jx; kx++ {
+ xWeight := 0.0
+ if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
+ xWeight = q.At(t)
+ }
+ xWeights[kx-ix] = xWeight
+ totalXWeight += xWeight
+ }
+ for x := range xWeights[:jx-ix] {
+ xWeights[x] /= totalXWeight
+ }
+
+ sy += float64(bias.Y)
+ sy -= 0.5
+ iy := int(math.Floor(sy - yHalfWidth))
+ if iy < sr.Min.Y {
+ iy = sr.Min.Y
+ }
+ jy := int(math.Ceil(sy + yHalfWidth))
+ if jy > sr.Max.Y {
+ jy = sr.Max.Y
+ }
+
+ totalYWeight := 0.0
+ for ky := iy; ky < jy; ky++ {
+ yWeight := 0.0
+ if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
+ yWeight = q.At(t)
+ }
+ yWeights[ky-iy] = yWeight
+ totalYWeight += yWeight
+ }
+ for y := range yWeights[:jy-iy] {
+ yWeights[y] /= totalYWeight
+ }
+
+ var pr, pg, pb, pa float64
+ for ky := iy; ky < jy; ky++ {
+ if yWeight := yWeights[ky-iy]; yWeight != 0 {
+ for kx := ix; kx < jx; kx++ {
+ if w := xWeights[kx-ix] * yWeight; w != 0 {
+ pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
+ if srcMask != nil {
+ _, _, _, ma := srcMask.At(smp.X+kx, smp.Y+ky).RGBA()
+ pru = pru * ma / 0xffff
+ pgu = pgu * ma / 0xffff
+ pbu = pbu * ma / 0xffff
+ pau = pau * ma / 0xffff
+ }
+ pr += float64(pru) * w
+ pg += float64(pgu) * w
+ pb += float64(pbu) * w
+ pa += float64(pau) * w
+ }
+ }
+ }
+ }
+
+ if pr > pa {
+ pr = pa
+ }
+ if pg > pa {
+ pg = pa
+ }
+ if pb > pa {
+ pb = pa
+ }
+
+ if dstMask != nil {
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
+ pr := uint32(fffftou(pr)) * ma / 0xffff
+ pg := uint32(fffftou(pg)) * ma / 0xffff
+ pb := uint32(fffftou(pb)) * ma / 0xffff
+ pa := uint32(fffftou(pa)) * ma / 0xffff
+ pa1 := 0xffff - ma
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ } else {
+ dstColorRGBA64.R = fffftou(pr)
+ dstColorRGBA64.G = fffftou(pg)
+ dstColorRGBA64.B = fffftou(pb)
+ dstColorRGBA64.A = fffftou(pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+ }
+}
diff --git a/vendor/golang.org/x/image/draw/scale.go b/vendor/golang.org/x/image/draw/scale.go
new file mode 100644
index 0000000..98ab404
--- /dev/null
+++ b/vendor/golang.org/x/image/draw/scale.go
@@ -0,0 +1,527 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:generate go run gen.go
+
+package draw
+
+import (
+ "image"
+ "image/color"
+ "math"
+ "sync"
+
+ "golang.org/x/image/math/f64"
+)
+
+// Copy copies the part of the source image defined by src and sr and writes
+// the result of a Porter-Duff composition to the part of the destination image
+// defined by dst and the translation of sr so that sr.Min translates to dp.
+func Copy(dst Image, dp image.Point, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ var o Options
+ if opts != nil {
+ o = *opts
+ }
+ dr := sr.Add(dp.Sub(sr.Min))
+ if o.DstMask == nil {
+ DrawMask(dst, dr, src, sr.Min, o.SrcMask, o.SrcMaskP.Add(sr.Min), op)
+ } else {
+ NearestNeighbor.Scale(dst, dr, src, sr, op, opts)
+ }
+}
+
+// Scaler scales the part of the source image defined by src and sr and writes
+// the result of a Porter-Duff composition to the part of the destination image
+// defined by dst and dr.
+//
+// A Scaler is safe to use concurrently.
+type Scaler interface {
+ Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options)
+}
+
+// Transformer transforms the part of the source image defined by src and sr
+// and writes the result of a Porter-Duff composition to the part of the
+// destination image defined by dst and the affine transform m applied to sr.
+//
+// For example, if m is the matrix
+//
+// m00 m01 m02
+// m10 m11 m12
+//
+// then the src-space point (sx, sy) maps to the dst-space point
+// (m00*sx + m01*sy + m02, m10*sx + m11*sy + m12).
+//
+// A Transformer is safe to use concurrently.
+type Transformer interface {
+ Transform(dst Image, m f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options)
+}
+
+// Options are optional parameters to Copy, Scale and Transform.
+//
+// A nil *Options means to use the default (zero) values of each field.
+type Options struct {
+ // Masks limit what parts of the dst image are drawn to and what parts of
+ // the src image are drawn from.
+ //
+ // A dst or src mask image having a zero alpha (transparent) pixel value in
+ // the respective coordinate space means that that dst pixel is entirely
+ // unaffected or that src pixel is considered transparent black. A full
+ // alpha (opaque) value means that the dst pixel is maximally affected or
+ // the src pixel contributes maximally. The default values, nil, are
+ // equivalent to fully opaque, infinitely large mask images.
+ //
+ // The DstMask is otherwise known as a clip mask, and its pixels map 1:1 to
+ // the dst image's pixels. DstMaskP in DstMask space corresponds to
+ // image.Point{X:0, Y:0} in dst space. For example, when limiting
+ // repainting to a 'dirty rectangle', use that image.Rectangle and a zero
+ // image.Point as the DstMask and DstMaskP.
+ //
+ // The SrcMask's pixels map 1:1 to the src image's pixels. SrcMaskP in
+ // SrcMask space corresponds to image.Point{X:0, Y:0} in src space. For
+ // example, when drawing font glyphs in a uniform color, use an
+ // *image.Uniform as the src, and use the glyph atlas image and the
+ // per-glyph offset as SrcMask and SrcMaskP:
+ // Copy(dst, dp, image.NewUniform(color), image.Rect(0, 0, glyphWidth, glyphHeight), &Options{
+ // SrcMask: glyphAtlas,
+ // SrcMaskP: glyphOffset,
+ // })
+ DstMask image.Image
+ DstMaskP image.Point
+ SrcMask image.Image
+ SrcMaskP image.Point
+
+ // TODO: a smooth vs sharp edges option, for arbitrary rotations?
+}
+
+// Interpolator is an interpolation algorithm, when dst and src pixels don't
+// have a 1:1 correspondence.
+//
+// Of the interpolators provided by this package:
+// - NearestNeighbor is fast but usually looks worst.
+// - CatmullRom is slow but usually looks best.
+// - ApproxBiLinear has reasonable speed and quality.
+//
+// The time taken depends on the size of dr. For kernel interpolators, the
+// speed also depends on the size of sr, and so are often slower than
+// non-kernel interpolators, especially when scaling down.
+type Interpolator interface {
+ Scaler
+ Transformer
+}
+
+// Kernel is an interpolator that blends source pixels weighted by a symmetric
+// kernel function.
+type Kernel struct {
+ // Support is the kernel support and must be >= 0. At(t) is assumed to be
+ // zero when t >= Support.
+ Support float64
+ // At is the kernel function. It will only be called with t in the
+ // range [0, Support).
+ At func(t float64) float64
+}
+
+// Scale implements the Scaler interface.
+func (q *Kernel) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
+ q.newScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy(), false).Scale(dst, dr, src, sr, op, opts)
+}
+
+// NewScaler returns a Scaler that is optimized for scaling multiple times with
+// the same fixed destination and source width and height.
+func (q *Kernel) NewScaler(dw, dh, sw, sh int) Scaler {
+ return q.newScaler(dw, dh, sw, sh, true)
+}
+
+func (q *Kernel) newScaler(dw, dh, sw, sh int, usePool bool) Scaler {
+ z := &kernelScaler{
+ kernel: q,
+ dw: int32(dw),
+ dh: int32(dh),
+ sw: int32(sw),
+ sh: int32(sh),
+ horizontal: newDistrib(q, int32(dw), int32(sw)),
+ vertical: newDistrib(q, int32(dh), int32(sh)),
+ }
+ if usePool {
+ z.pool.New = func() interface{} {
+ tmp := z.makeTmpBuf()
+ return &tmp
+ }
+ }
+ return z
+}
+
+var (
+ // NearestNeighbor is the nearest neighbor interpolator. It is very fast,
+ // but usually gives very low quality results. When scaling up, the result
+ // will look 'blocky'.
+ NearestNeighbor = Interpolator(nnInterpolator{})
+
+ // ApproxBiLinear is a mixture of the nearest neighbor and bi-linear
+ // interpolators. It is fast, but usually gives medium quality results.
+ //
+ // It implements bi-linear interpolation when upscaling and a bi-linear
+ // blend of the 4 nearest neighbor pixels when downscaling. This yields
+ // nicer quality than nearest neighbor interpolation when upscaling, but
+ // the time taken is independent of the number of source pixels, unlike the
+ // bi-linear interpolator. When downscaling a large image, the performance
+ // difference can be significant.
+ ApproxBiLinear = Interpolator(ablInterpolator{})
+
+ // BiLinear is the tent kernel. It is slow, but usually gives high quality
+ // results.
+ BiLinear = &Kernel{1, func(t float64) float64 {
+ return 1 - t
+ }}
+
+ // CatmullRom is the Catmull-Rom kernel. It is very slow, but usually gives
+ // very high quality results.
+ //
+ // It is an instance of the more general cubic BC-spline kernel with parameters
+ // B=0 and C=0.5. See Mitchell and Netravali, "Reconstruction Filters in
+ // Computer Graphics", Computer Graphics, Vol. 22, No. 4, pp. 221-228.
+ CatmullRom = &Kernel{2, func(t float64) float64 {
+ if t < 1 {
+ return (1.5*t-2.5)*t*t + 1
+ }
+ return ((-0.5*t+2.5)*t-4)*t + 2
+ }}
+
+ // TODO: a Kaiser-Bessel kernel?
+)
+
+type nnInterpolator struct{}
+
+type ablInterpolator struct{}
+
+type kernelScaler struct {
+ kernel *Kernel
+ dw, dh, sw, sh int32
+ horizontal, vertical distrib
+ pool sync.Pool
+}
+
+func (z *kernelScaler) makeTmpBuf() [][4]float64 {
+ return make([][4]float64, z.dw*z.sh)
+}
+
+// source is a range of contribs, their inverse total weight, and that ITW
+// divided by 0xffff.
+type source struct {
+ i, j int32
+ invTotalWeight float64
+ invTotalWeightFFFF float64
+}
+
+// contrib is the weight of a column or row.
+type contrib struct {
+ coord int32
+ weight float64
+}
+
+// distrib measures how source pixels are distributed over destination pixels.
+type distrib struct {
+ // sources are what contribs each column or row in the source image owns,
+ // and the total weight of those contribs.
+ sources []source
+ // contribs are the contributions indexed by sources[s].i and sources[s].j.
+ contribs []contrib
+}
+
+// newDistrib returns a distrib that distributes sw source columns (or rows)
+// over dw destination columns (or rows).
+func newDistrib(q *Kernel, dw, sw int32) distrib {
+ scale := float64(sw) / float64(dw)
+ halfWidth, kernelArgScale := q.Support, 1.0
+ // When shrinking, broaden the effective kernel support so that we still
+ // visit every source pixel.
+ if scale > 1 {
+ halfWidth *= scale
+ kernelArgScale = 1 / scale
+ }
+
+ // Make the sources slice, one source for each column or row, and temporarily
+ // appropriate its elements' fields so that invTotalWeight is the scaled
+ // coordinate of the source column or row, and i and j are the lower and
+ // upper bounds of the range of destination columns or rows affected by the
+ // source column or row.
+ n, sources := int32(0), make([]source, dw)
+ for x := range sources {
+ center := (float64(x)+0.5)*scale - 0.5
+ i := int32(math.Floor(center - halfWidth))
+ if i < 0 {
+ i = 0
+ }
+ j := int32(math.Ceil(center + halfWidth))
+ if j > sw {
+ j = sw
+ if j < i {
+ j = i
+ }
+ }
+ sources[x] = source{i: i, j: j, invTotalWeight: center}
+ n += j - i
+ }
+
+ contribs := make([]contrib, 0, n)
+ for k, b := range sources {
+ totalWeight := 0.0
+ l := int32(len(contribs))
+ for coord := b.i; coord < b.j; coord++ {
+ t := abs((b.invTotalWeight - float64(coord)) * kernelArgScale)
+ if t >= q.Support {
+ continue
+ }
+ weight := q.At(t)
+ if weight == 0 {
+ continue
+ }
+ totalWeight += weight
+ contribs = append(contribs, contrib{coord, weight})
+ }
+ totalWeight = 1 / totalWeight
+ sources[k] = source{
+ i: l,
+ j: int32(len(contribs)),
+ invTotalWeight: totalWeight,
+ invTotalWeightFFFF: totalWeight / 0xffff,
+ }
+ }
+
+ return distrib{sources, contribs}
+}
+
+// abs is like math.Abs, but it doesn't care about negative zero, infinities or
+// NaNs.
+func abs(f float64) float64 {
+ if f < 0 {
+ f = -f
+ }
+ return f
+}
+
+// ftou converts the range [0.0, 1.0] to [0, 0xffff].
+func ftou(f float64) uint16 {
+ i := int32(0xffff*f + 0.5)
+ if i > 0xffff {
+ return 0xffff
+ }
+ if i > 0 {
+ return uint16(i)
+ }
+ return 0
+}
+
+// fffftou converts the range [0.0, 65535.0] to [0, 0xffff].
+func fffftou(f float64) uint16 {
+ i := int32(f + 0.5)
+ if i > 0xffff {
+ return 0xffff
+ }
+ if i > 0 {
+ return uint16(i)
+ }
+ return 0
+}
+
+// invert returns the inverse of m.
+//
+// TODO: move this into the f64 package, once we work out the convention for
+// matrix methods in that package: do they modify the receiver, take a dst
+// pointer argument, or return a new value?
+func invert(m *f64.Aff3) f64.Aff3 {
+ m00 := +m[3*1+1]
+ m01 := -m[3*0+1]
+ m02 := +m[3*1+2]*m[3*0+1] - m[3*1+1]*m[3*0+2]
+ m10 := -m[3*1+0]
+ m11 := +m[3*0+0]
+ m12 := +m[3*1+0]*m[3*0+2] - m[3*1+2]*m[3*0+0]
+
+ det := m00*m11 - m10*m01
+
+ return f64.Aff3{
+ m00 / det,
+ m01 / det,
+ m02 / det,
+ m10 / det,
+ m11 / det,
+ m12 / det,
+ }
+}
+
+func matMul(p, q *f64.Aff3) f64.Aff3 {
+ return f64.Aff3{
+ p[3*0+0]*q[3*0+0] + p[3*0+1]*q[3*1+0],
+ p[3*0+0]*q[3*0+1] + p[3*0+1]*q[3*1+1],
+ p[3*0+0]*q[3*0+2] + p[3*0+1]*q[3*1+2] + p[3*0+2],
+ p[3*1+0]*q[3*0+0] + p[3*1+1]*q[3*1+0],
+ p[3*1+0]*q[3*0+1] + p[3*1+1]*q[3*1+1],
+ p[3*1+0]*q[3*0+2] + p[3*1+1]*q[3*1+2] + p[3*1+2],
+ }
+}
+
+// transformRect returns a rectangle dr that contains sr transformed by s2d.
+func transformRect(s2d *f64.Aff3, sr *image.Rectangle) (dr image.Rectangle) {
+ ps := [...]image.Point{
+ {sr.Min.X, sr.Min.Y},
+ {sr.Max.X, sr.Min.Y},
+ {sr.Min.X, sr.Max.Y},
+ {sr.Max.X, sr.Max.Y},
+ }
+ for i, p := range ps {
+ sxf := float64(p.X)
+ syf := float64(p.Y)
+ dx := int(math.Floor(s2d[0]*sxf + s2d[1]*syf + s2d[2]))
+ dy := int(math.Floor(s2d[3]*sxf + s2d[4]*syf + s2d[5]))
+
+ // The +1 adjustments below are because an image.Rectangle is inclusive
+ // on the low end but exclusive on the high end.
+
+ if i == 0 {
+ dr = image.Rectangle{
+ Min: image.Point{dx + 0, dy + 0},
+ Max: image.Point{dx + 1, dy + 1},
+ }
+ continue
+ }
+
+ if dr.Min.X > dx {
+ dr.Min.X = dx
+ }
+ dx++
+ if dr.Max.X < dx {
+ dr.Max.X = dx
+ }
+
+ if dr.Min.Y > dy {
+ dr.Min.Y = dy
+ }
+ dy++
+ if dr.Max.Y < dy {
+ dr.Max.Y = dy
+ }
+ }
+ return dr
+}
+
+func clipAffectedDestRect(adr image.Rectangle, dstMask image.Image, dstMaskP image.Point) (image.Rectangle, image.Image) {
+ if dstMask == nil {
+ return adr, nil
+ }
+ // TODO: enable this fast path once Go 1.5 is released, where an
+ // image.Rectangle implements image.Image.
+ // if r, ok := dstMask.(image.Rectangle); ok {
+ // return adr.Intersect(r.Sub(dstMaskP)), nil
+ // }
+ // TODO: clip to dstMask.Bounds() if the color model implies that out-of-bounds means 0 alpha?
+ return adr, dstMask
+}
+
+func transform_Uniform(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Uniform, sr image.Rectangle, bias image.Point, op Op) {
+ switch op {
+ case Over:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ pr, pg, pb, pa := src.C.RGBA()
+ pa1 := (0xffff - pa) * 0x101
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := dst.PixOffset(dr.Min.X+adr.Min.X, dr.Min.Y+int(dy))
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
+ dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
+ dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
+ dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
+ }
+ }
+
+ default:
+ pr, pg, pb, pa := src.C.RGBA()
+ pa1 := 0xffff - pa
+ dstColorRGBA64 := &color.RGBA64{}
+ dstColor := color.Color(dstColorRGBA64)
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
+ dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
+ dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
+ dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
+ dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+ }
+
+ case Src:
+ switch dst := dst.(type) {
+ case *image.RGBA:
+ pr, pg, pb, pa := src.C.RGBA()
+ pr8 := uint8(pr >> 8)
+ pg8 := uint8(pg >> 8)
+ pb8 := uint8(pb >> 8)
+ pa8 := uint8(pa >> 8)
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ d := dst.PixOffset(dr.Min.X+adr.Min.X, dr.Min.Y+int(dy))
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ dst.Pix[d+0] = pr8
+ dst.Pix[d+1] = pg8
+ dst.Pix[d+2] = pb8
+ dst.Pix[d+3] = pa8
+ }
+ }
+
+ default:
+ pr, pg, pb, pa := src.C.RGBA()
+ dstColorRGBA64 := &color.RGBA64{
+ uint16(pr),
+ uint16(pg),
+ uint16(pb),
+ uint16(pa),
+ }
+ dstColor := color.Color(dstColorRGBA64)
+
+ for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
+ dyf := float64(dr.Min.Y+int(dy)) + 0.5
+ for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
+ dxf := float64(dr.Min.X+int(dx)) + 0.5
+ sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
+ sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
+ if !(image.Point{sx0, sy0}).In(sr) {
+ continue
+ }
+ dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
+ }
+ }
+ }
+ }
+}
+
+func opaque(m image.Image) bool {
+ o, ok := m.(interface {
+ Opaque() bool
+ })
+ return ok && o.Opaque()
+}