aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/tiff/reader.go
blob: 8a941c112fdfd308acb2cc6b3a225bdb92dad432 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package tiff implements a TIFF image decoder and encoder.
//
// The TIFF specification is at http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
package tiff // import "golang.org/x/image/tiff"

import (
	"compress/zlib"
	"encoding/binary"
	"fmt"
	"image"
	"image/color"
	"io"
	"io/ioutil"
	"math"

	"golang.org/x/image/tiff/lzw"
)

// A FormatError reports that the input is not a valid TIFF image.
type FormatError string

func (e FormatError) Error() string {
	return "tiff: invalid format: " + string(e)
}

// An UnsupportedError reports that the input uses a valid but
// unimplemented feature.
type UnsupportedError string

func (e UnsupportedError) Error() string {
	return "tiff: unsupported feature: " + string(e)
}

var errNoPixels = FormatError("not enough pixel data")

type decoder struct {
	r         io.ReaderAt
	byteOrder binary.ByteOrder
	config    image.Config
	mode      imageMode
	bpp       uint
	features  map[int][]uint
	palette   []color.Color

	buf   []byte
	off   int    // Current offset in buf.
	v     uint32 // Buffer value for reading with arbitrary bit depths.
	nbits uint   // Remaining number of bits in v.
}

// firstVal returns the first uint of the features entry with the given tag,
// or 0 if the tag does not exist.
func (d *decoder) firstVal(tag int) uint {
	f := d.features[tag]
	if len(f) == 0 {
		return 0
	}
	return f[0]
}

// ifdUint decodes the IFD entry in p, which must be of the Byte, Short
// or Long type, and returns the decoded uint values.
func (d *decoder) ifdUint(p []byte) (u []uint, err error) {
	var raw []byte
	if len(p) < ifdLen {
		return nil, FormatError("bad IFD entry")
	}

	datatype := d.byteOrder.Uint16(p[2:4])
	if dt := int(datatype); dt <= 0 || dt >= len(lengths) {
		return nil, UnsupportedError("IFD entry datatype")
	}

	count := d.byteOrder.Uint32(p[4:8])
	if count > math.MaxInt32/lengths[datatype] {
		return nil, FormatError("IFD data too large")
	}
	if datalen := lengths[datatype] * count; datalen > 4 {
		// The IFD contains a pointer to the real value.
		raw = make([]byte, datalen)
		_, err = d.r.ReadAt(raw, int64(d.byteOrder.Uint32(p[8:12])))
	} else {
		raw = p[8 : 8+datalen]
	}
	if err != nil {
		return nil, err
	}

	u = make([]uint, count)
	switch datatype {
	case dtByte:
		for i := uint32(0); i < count; i++ {
			u[i] = uint(raw[i])
		}
	case dtShort:
		for i := uint32(0); i < count; i++ {
			u[i] = uint(d.byteOrder.Uint16(raw[2*i : 2*(i+1)]))
		}
	case dtLong:
		for i := uint32(0); i < count; i++ {
			u[i] = uint(d.byteOrder.Uint32(raw[4*i : 4*(i+1)]))
		}
	default:
		return nil, UnsupportedError("data type")
	}
	return u, nil
}

// parseIFD decides whether the the IFD entry in p is "interesting" and
// stows away the data in the decoder. It returns the tag number of the
// entry and an error, if any.
func (d *decoder) parseIFD(p []byte) (int, error) {
	tag := d.byteOrder.Uint16(p[0:2])
	switch tag {
	case tBitsPerSample,
		tExtraSamples,
		tPhotometricInterpretation,
		tCompression,
		tPredictor,
		tStripOffsets,
		tStripByteCounts,
		tRowsPerStrip,
		tTileWidth,
		tTileLength,
		tTileOffsets,
		tTileByteCounts,
		tImageLength,
		tImageWidth:
		val, err := d.ifdUint(p)
		if err != nil {
			return 0, err
		}
		d.features[int(tag)] = val
	case tColorMap:
		val, err := d.ifdUint(p)
		if err != nil {
			return 0, err
		}
		numcolors := len(val) / 3
		if len(val)%3 != 0 || numcolors <= 0 || numcolors > 256 {
			return 0, FormatError("bad ColorMap length")
		}
		d.palette = make([]color.Color, numcolors)
		for i := 0; i < numcolors; i++ {
			d.palette[i] = color.RGBA64{
				uint16(val[i]),
				uint16(val[i+numcolors]),
				uint16(val[i+2*numcolors]),
				0xffff,
			}
		}
	case tSampleFormat:
		// Page 27 of the spec: If the SampleFormat is present and
		// the value is not 1 [= unsigned integer data], a Baseline
		// TIFF reader that cannot handle the SampleFormat value
		// must terminate the import process gracefully.
		val, err := d.ifdUint(p)
		if err != nil {
			return 0, err
		}
		for _, v := range val {
			if v != 1 {
				return 0, UnsupportedError("sample format")
			}
		}
	}
	return int(tag), nil
}

// readBits reads n bits from the internal buffer starting at the current offset.
func (d *decoder) readBits(n uint) (v uint32, ok bool) {
	for d.nbits < n {
		d.v <<= 8
		if d.off >= len(d.buf) {
			return 0, false
		}
		d.v |= uint32(d.buf[d.off])
		d.off++
		d.nbits += 8
	}
	d.nbits -= n
	rv := d.v >> d.nbits
	d.v &^= rv << d.nbits
	return rv, true
}

// flushBits discards the unread bits in the buffer used by readBits.
// It is used at the end of a line.
func (d *decoder) flushBits() {
	d.v = 0
	d.nbits = 0
}

// minInt returns the smaller of x or y.
func minInt(a, b int) int {
	if a <= b {
		return a
	}
	return b
}

// decode decodes the raw data of an image.
// It reads from d.buf and writes the strip or tile into dst.
func (d *decoder) decode(dst image.Image, xmin, ymin, xmax, ymax int) error {
	d.off = 0

	// Apply horizontal predictor if necessary.
	// In this case, p contains the color difference to the preceding pixel.
	// See page 64-65 of the spec.
	if d.firstVal(tPredictor) == prHorizontal {
		switch d.bpp {
		case 16:
			var off int
			n := 2 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel
			for y := ymin; y < ymax; y++ {
				off += n
				for x := 0; x < (xmax-xmin-1)*n; x += 2 {
					if off+2 > len(d.buf) {
						return errNoPixels
					}
					v0 := d.byteOrder.Uint16(d.buf[off-n : off-n+2])
					v1 := d.byteOrder.Uint16(d.buf[off : off+2])
					d.byteOrder.PutUint16(d.buf[off:off+2], v1+v0)
					off += 2
				}
			}
		case 8:
			var off int
			n := 1 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel
			for y := ymin; y < ymax; y++ {
				off += n
				for x := 0; x < (xmax-xmin-1)*n; x++ {
					if off >= len(d.buf) {
						return errNoPixels
					}
					d.buf[off] += d.buf[off-n]
					off++
				}
			}
		case 1:
			return UnsupportedError("horizontal predictor with 1 BitsPerSample")
		}
	}

	rMaxX := minInt(xmax, dst.Bounds().Max.X)
	rMaxY := minInt(ymax, dst.Bounds().Max.Y)
	switch d.mode {
	case mGray, mGrayInvert:
		if d.bpp == 16 {
			img := dst.(*image.Gray16)
			for y := ymin; y < rMaxY; y++ {
				for x := xmin; x < rMaxX; x++ {
					if d.off+2 > len(d.buf) {
						return errNoPixels
					}
					v := d.byteOrder.Uint16(d.buf[d.off : d.off+2])
					d.off += 2
					if d.mode == mGrayInvert {
						v = 0xffff - v
					}
					img.SetGray16(x, y, color.Gray16{v})
				}
				if rMaxX == img.Bounds().Max.X {
					d.off += 2 * (xmax - img.Bounds().Max.X)
				}
			}
		} else {
			img := dst.(*image.Gray)
			max := uint32((1 << d.bpp) - 1)
			for y := ymin; y < rMaxY; y++ {
				for x := xmin; x < rMaxX; x++ {
					v, ok := d.readBits(d.bpp)
					if !ok {
						return errNoPixels
					}
					v = v * 0xff / max
					if d.mode == mGrayInvert {
						v = 0xff - v
					}
					img.SetGray(x, y, color.Gray{uint8(v)})
				}
				d.flushBits()
			}
		}
	case mPaletted:
		img := dst.(*image.Paletted)
		for y := ymin; y < rMaxY; y++ {
			for x := xmin; x < rMaxX; x++ {
				v, ok := d.readBits(d.bpp)
				if !ok {
					return errNoPixels
				}
				img.SetColorIndex(x, y, uint8(v))
			}
			d.flushBits()
		}
	case mRGB:
		if d.bpp == 16 {
			img := dst.(*image.RGBA64)
			for y := ymin; y < rMaxY; y++ {
				for x := xmin; x < rMaxX; x++ {
					if d.off+6 > len(d.buf) {
						return errNoPixels
					}
					r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
					g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
					b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
					d.off += 6
					img.SetRGBA64(x, y, color.RGBA64{r, g, b, 0xffff})
				}
			}
		} else {
			img := dst.(*image.RGBA)
			for y := ymin; y < rMaxY; y++ {
				min := img.PixOffset(xmin, y)
				max := img.PixOffset(rMaxX, y)
				off := (y - ymin) * (xmax - xmin) * 3
				for i := min; i < max; i += 4 {
					if off+3 > len(d.buf) {
						return errNoPixels
					}
					img.Pix[i+0] = d.buf[off+0]
					img.Pix[i+1] = d.buf[off+1]
					img.Pix[i+2] = d.buf[off+2]
					img.Pix[i+3] = 0xff
					off += 3
				}
			}
		}
	case mNRGBA:
		if d.bpp == 16 {
			img := dst.(*image.NRGBA64)
			for y := ymin; y < rMaxY; y++ {
				for x := xmin; x < rMaxX; x++ {
					if d.off+8 > len(d.buf) {
						return errNoPixels
					}
					r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
					g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
					b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
					a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
					d.off += 8
					img.SetNRGBA64(x, y, color.NRGBA64{r, g, b, a})
				}
			}
		} else {
			img := dst.(*image.NRGBA)
			for y := ymin; y < rMaxY; y++ {
				min := img.PixOffset(xmin, y)
				max := img.PixOffset(rMaxX, y)
				i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
				if i1 > len(d.buf) {
					return errNoPixels
				}
				copy(img.Pix[min:max], d.buf[i0:i1])
			}
		}
	case mRGBA:
		if d.bpp == 16 {
			img := dst.(*image.RGBA64)
			for y := ymin; y < rMaxY; y++ {
				for x := xmin; x < rMaxX; x++ {
					if d.off+8 > len(d.buf) {
						return errNoPixels
					}
					r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
					g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
					b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
					a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
					d.off += 8
					img.SetRGBA64(x, y, color.RGBA64{r, g, b, a})
				}
			}
		} else {
			img := dst.(*image.RGBA)
			for y := ymin; y < rMaxY; y++ {
				min := img.PixOffset(xmin, y)
				max := img.PixOffset(rMaxX, y)
				i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
				if i1 > len(d.buf) {
					return errNoPixels
				}
				copy(img.Pix[min:max], d.buf[i0:i1])
			}
		}
	}

	return nil
}

func newDecoder(r io.Reader) (*decoder, error) {
	d := &decoder{
		r:        newReaderAt(r),
		features: make(map[int][]uint),
	}

	p := make([]byte, 8)
	if _, err := d.r.ReadAt(p, 0); err != nil {
		return nil, err
	}
	switch string(p[0:4]) {
	case leHeader:
		d.byteOrder = binary.LittleEndian
	case beHeader:
		d.byteOrder = binary.BigEndian
	default:
		return nil, FormatError("malformed header")
	}

	ifdOffset := int64(d.byteOrder.Uint32(p[4:8]))

	// The first two bytes contain the number of entries (12 bytes each).
	if _, err := d.r.ReadAt(p[0:2], ifdOffset); err != nil {
		return nil, err
	}
	numItems := int(d.byteOrder.Uint16(p[0:2]))

	// All IFD entries are read in one chunk.
	p = make([]byte, ifdLen*numItems)
	if _, err := d.r.ReadAt(p, ifdOffset+2); err != nil {
		return nil, err
	}

	prevTag := -1
	for i := 0; i < len(p); i += ifdLen {
		tag, err := d.parseIFD(p[i : i+ifdLen])
		if err != nil {
			return nil, err
		}
		if tag <= prevTag {
			return nil, FormatError("tags are not sorted in ascending order")
		}
		prevTag = tag
	}

	d.config.Width = int(d.firstVal(tImageWidth))
	d.config.Height = int(d.firstVal(tImageLength))

	if _, ok := d.features[tBitsPerSample]; !ok {
		return nil, FormatError("BitsPerSample tag missing")
	}
	d.bpp = d.firstVal(tBitsPerSample)
	switch d.bpp {
	case 0:
		return nil, FormatError("BitsPerSample must not be 0")
	case 1, 8, 16:
		// Nothing to do, these are accepted by this implementation.
	default:
		return nil, UnsupportedError(fmt.Sprintf("BitsPerSample of %v", d.bpp))
	}

	// Determine the image mode.
	switch d.firstVal(tPhotometricInterpretation) {
	case pRGB:
		if d.bpp == 16 {
			for _, b := range d.features[tBitsPerSample] {
				if b != 16 {
					return nil, FormatError("wrong number of samples for 16bit RGB")
				}
			}
		} else {
			for _, b := range d.features[tBitsPerSample] {
				if b != 8 {
					return nil, FormatError("wrong number of samples for 8bit RGB")
				}
			}
		}
		// RGB images normally have 3 samples per pixel.
		// If there are more, ExtraSamples (p. 31-32 of the spec)
		// gives their meaning (usually an alpha channel).
		//
		// This implementation does not support extra samples
		// of an unspecified type.
		switch len(d.features[tBitsPerSample]) {
		case 3:
			d.mode = mRGB
			if d.bpp == 16 {
				d.config.ColorModel = color.RGBA64Model
			} else {
				d.config.ColorModel = color.RGBAModel
			}
		case 4:
			switch d.firstVal(tExtraSamples) {
			case 1:
				d.mode = mRGBA
				if d.bpp == 16 {
					d.config.ColorModel = color.RGBA64Model
				} else {
					d.config.ColorModel = color.RGBAModel
				}
			case 2:
				d.mode = mNRGBA
				if d.bpp == 16 {
					d.config.ColorModel = color.NRGBA64Model
				} else {
					d.config.ColorModel = color.NRGBAModel
				}
			default:
				return nil, FormatError("wrong number of samples for RGB")
			}
		default:
			return nil, FormatError("wrong number of samples for RGB")
		}
	case pPaletted:
		d.mode = mPaletted
		d.config.ColorModel = color.Palette(d.palette)
	case pWhiteIsZero:
		d.mode = mGrayInvert
		if d.bpp == 16 {
			d.config.ColorModel = color.Gray16Model
		} else {
			d.config.ColorModel = color.GrayModel
		}
	case pBlackIsZero:
		d.mode = mGray
		if d.bpp == 16 {
			d.config.ColorModel = color.Gray16Model
		} else {
			d.config.ColorModel = color.GrayModel
		}
	default:
		return nil, UnsupportedError("color model")
	}

	return d, nil
}

// DecodeConfig returns the color model and dimensions of a TIFF image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
	d, err := newDecoder(r)
	if err != nil {
		return image.Config{}, err
	}
	return d.config, nil
}

// Decode reads a TIFF image from r and returns it as an image.Image.
// The type of Image returned depends on the contents of the TIFF.
func Decode(r io.Reader) (img image.Image, err error) {
	d, err := newDecoder(r)
	if err != nil {
		return
	}

	blockPadding := false
	blockWidth := d.config.Width
	blockHeight := d.config.Height
	blocksAcross := 1
	blocksDown := 1

	if d.config.Width == 0 {
		blocksAcross = 0
	}
	if d.config.Height == 0 {
		blocksDown = 0
	}

	var blockOffsets, blockCounts []uint

	if int(d.firstVal(tTileWidth)) != 0 {
		blockPadding = true

		blockWidth = int(d.firstVal(tTileWidth))
		blockHeight = int(d.firstVal(tTileLength))

		if blockWidth != 0 {
			blocksAcross = (d.config.Width + blockWidth - 1) / blockWidth
		}
		if blockHeight != 0 {
			blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
		}

		blockCounts = d.features[tTileByteCounts]
		blockOffsets = d.features[tTileOffsets]

	} else {
		if int(d.firstVal(tRowsPerStrip)) != 0 {
			blockHeight = int(d.firstVal(tRowsPerStrip))
		}

		if blockHeight != 0 {
			blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
		}

		blockOffsets = d.features[tStripOffsets]
		blockCounts = d.features[tStripByteCounts]
	}

	// Check if we have the right number of strips/tiles, offsets and counts.
	if n := blocksAcross * blocksDown; len(blockOffsets) < n || len(blockCounts) < n {
		return nil, FormatError("inconsistent header")
	}

	imgRect := image.Rect(0, 0, d.config.Width, d.config.Height)
	switch d.mode {
	case mGray, mGrayInvert:
		if d.bpp == 16 {
			img = image.NewGray16(imgRect)
		} else {
			img = image.NewGray(imgRect)
		}
	case mPaletted:
		img = image.NewPaletted(imgRect, d.palette)
	case mNRGBA:
		if d.bpp == 16 {
			img = image.NewNRGBA64(imgRect)
		} else {
			img = image.NewNRGBA(imgRect)
		}
	case mRGB, mRGBA:
		if d.bpp == 16 {
			img = image.NewRGBA64(imgRect)
		} else {
			img = image.NewRGBA(imgRect)
		}
	}

	for i := 0; i < blocksAcross; i++ {
		blkW := blockWidth
		if !blockPadding && i == blocksAcross-1 && d.config.Width%blockWidth != 0 {
			blkW = d.config.Width % blockWidth
		}
		for j := 0; j < blocksDown; j++ {
			blkH := blockHeight
			if !blockPadding && j == blocksDown-1 && d.config.Height%blockHeight != 0 {
				blkH = d.config.Height % blockHeight
			}
			offset := int64(blockOffsets[j*blocksAcross+i])
			n := int64(blockCounts[j*blocksAcross+i])
			switch d.firstVal(tCompression) {

			// According to the spec, Compression does not have a default value,
			// but some tools interpret a missing Compression value as none so we do
			// the same.
			case cNone, 0:
				if b, ok := d.r.(*buffer); ok {
					d.buf, err = b.Slice(int(offset), int(n))
				} else {
					d.buf = make([]byte, n)
					_, err = d.r.ReadAt(d.buf, offset)
				}
			case cLZW:
				r := lzw.NewReader(io.NewSectionReader(d.r, offset, n), lzw.MSB, 8)
				d.buf, err = ioutil.ReadAll(r)
				r.Close()
			case cDeflate, cDeflateOld:
				var r io.ReadCloser
				r, err = zlib.NewReader(io.NewSectionReader(d.r, offset, n))
				if err != nil {
					return nil, err
				}
				d.buf, err = ioutil.ReadAll(r)
				r.Close()
			case cPackBits:
				d.buf, err = unpackBits(io.NewSectionReader(d.r, offset, n))
			default:
				err = UnsupportedError(fmt.Sprintf("compression value %d", d.firstVal(tCompression)))
			}
			if err != nil {
				return nil, err
			}

			xmin := i * blockWidth
			ymin := j * blockHeight
			xmax := xmin + blkW
			ymax := ymin + blkH
			err = d.decode(img, xmin, ymin, xmax, ymax)
			if err != nil {
				return nil, err
			}
		}
	}
	return
}

func init() {
	image.RegisterFormat("tiff", leHeader, Decode, DecodeConfig)
	image.RegisterFormat("tiff", beHeader, Decode, DecodeConfig)
}