aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/vector/raster_fixed.go
blob: 5b0fe7a7ebfb3135f6f16b88de260a0197a50001 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package vector

// This file contains a fixed point math implementation of the vector
// graphics rasterizer.

const (
	// ϕ is the number of binary digits after the fixed point.
	//
	// For example, if ϕ == 10 (and int1ϕ is based on the int32 type) then we
	// are using 22.10 fixed point math.
	//
	// When changing this number, also change the assembly code (search for ϕ
	// in the .s files).
	ϕ = 9

	fxOne          int1ϕ = 1 << ϕ
	fxOneAndAHalf  int1ϕ = 1<<ϕ + 1<<(ϕ-1)
	fxOneMinusIota int1ϕ = 1<<ϕ - 1 // Used for rounding up.
)

// int1ϕ is a signed fixed-point number with 1*ϕ binary digits after the fixed
// point.
type int1ϕ int32

// int2ϕ is a signed fixed-point number with 2*ϕ binary digits after the fixed
// point.
//
// The Rasterizer's bufU32 field, nominally of type []uint32 (since that slice
// is also used by other code), can be thought of as a []int2ϕ during the
// fixedLineTo method. Lines of code that are actually like:
//	buf[i] += uint32(etc) // buf has type []uint32.
// can be thought of as
//	buf[i] += int2ϕ(etc)  // buf has type []int2ϕ.
type int2ϕ int32

func fixedMax(x, y int1ϕ) int1ϕ {
	if x > y {
		return x
	}
	return y
}

func fixedMin(x, y int1ϕ) int1ϕ {
	if x < y {
		return x
	}
	return y
}

func fixedFloor(x int1ϕ) int32 { return int32(x >> ϕ) }
func fixedCeil(x int1ϕ) int32  { return int32((x + fxOneMinusIota) >> ϕ) }

func (z *Rasterizer) fixedLineTo(bx, by float32) {
	ax, ay := z.penX, z.penY
	z.penX, z.penY = bx, by
	dir := int1ϕ(1)
	if ay > by {
		dir, ax, ay, bx, by = -1, bx, by, ax, ay
	}
	// Horizontal line segments yield no change in coverage. Almost horizontal
	// segments would yield some change, in ideal math, but the computation
	// further below, involving 1 / (by - ay), is unstable in fixed point math,
	// so we treat the segment as if it was perfectly horizontal.
	if by-ay <= 0.000001 {
		return
	}
	dxdy := (bx - ax) / (by - ay)

	ayϕ := int1ϕ(ay * float32(fxOne))
	byϕ := int1ϕ(by * float32(fxOne))

	x := int1ϕ(ax * float32(fxOne))
	y := fixedFloor(ayϕ)
	yMax := fixedCeil(byϕ)
	if yMax > int32(z.size.Y) {
		yMax = int32(z.size.Y)
	}
	width := int32(z.size.X)

	for ; y < yMax; y++ {
		dy := fixedMin(int1ϕ(y+1)<<ϕ, byϕ) - fixedMax(int1ϕ(y)<<ϕ, ayϕ)
		xNext := x + int1ϕ(float32(dy)*dxdy)
		if y < 0 {
			x = xNext
			continue
		}
		buf := z.bufU32[y*width:]
		d := dy * dir // d ranges up to ±1<<(1*ϕ).
		x0, x1 := x, xNext
		if x > xNext {
			x0, x1 = x1, x0
		}
		x0i := fixedFloor(x0)
		x0Floor := int1ϕ(x0i) << ϕ
		x1i := fixedCeil(x1)
		x1Ceil := int1ϕ(x1i) << ϕ

		if x1i <= x0i+1 {
			xmf := (x+xNext)>>1 - x0Floor
			if i := clamp(x0i+0, width); i < uint(len(buf)) {
				buf[i] += uint32(d * (fxOne - xmf))
			}
			if i := clamp(x0i+1, width); i < uint(len(buf)) {
				buf[i] += uint32(d * xmf)
			}
		} else {
			oneOverS := x1 - x0
			twoOverS := 2 * oneOverS
			x0f := x0 - x0Floor
			oneMinusX0f := fxOne - x0f
			oneMinusX0fSquared := oneMinusX0f * oneMinusX0f
			x1f := x1 - x1Ceil + fxOne
			x1fSquared := x1f * x1f

			// These next two variables are unused, as rounding errors are
			// minimized when we delay the division by oneOverS for as long as
			// possible. These lines of code (and the "In ideal math" comments
			// below) are commented out instead of deleted in order to aid the
			// comparison with the floating point version of the rasterizer.
			//
			// a0 := ((oneMinusX0f * oneMinusX0f) >> 1) / oneOverS
			// am := ((x1f * x1f) >> 1) / oneOverS

			if i := clamp(x0i, width); i < uint(len(buf)) {
				// In ideal math: buf[i] += uint32(d * a0)
				D := oneMinusX0fSquared // D ranges up to ±1<<(2*ϕ).
				D *= d                  // D ranges up to ±1<<(3*ϕ).
				D /= twoOverS
				buf[i] += uint32(D)
			}

			if x1i == x0i+2 {
				if i := clamp(x0i+1, width); i < uint(len(buf)) {
					// In ideal math: buf[i] += uint32(d * (fxOne - a0 - am))
					//
					// (x1i == x0i+2) and (twoOverS == 2 * (x1 - x0)) implies
					// that twoOverS ranges up to +1<<(1*ϕ+2).
					D := twoOverS<<ϕ - oneMinusX0fSquared - x1fSquared // D ranges up to ±1<<(2*ϕ+2).
					D *= d                                             // D ranges up to ±1<<(3*ϕ+2).
					D /= twoOverS
					buf[i] += uint32(D)
				}
			} else {
				// This is commented out for the same reason as a0 and am.
				//
				// a1 := ((fxOneAndAHalf - x0f) << ϕ) / oneOverS

				if i := clamp(x0i+1, width); i < uint(len(buf)) {
					// In ideal math:
					//	buf[i] += uint32(d * (a1 - a0))
					// or equivalently (but better in non-ideal, integer math,
					// with respect to rounding errors),
					//	buf[i] += uint32(A * d / twoOverS)
					// where
					//	A = (a1 - a0) * twoOverS
					//	  = a1*twoOverS - a0*twoOverS
					// Noting that twoOverS/oneOverS equals 2, substituting for
					// a0 and then a1, given above, yields:
					//	A = a1*twoOverS - oneMinusX0fSquared
					//	  = (fxOneAndAHalf-x0f)<<(ϕ+1) - oneMinusX0fSquared
					//	  = fxOneAndAHalf<<(ϕ+1) - x0f<<(ϕ+1) - oneMinusX0fSquared
					//
					// This is a positive number minus two non-negative
					// numbers. For an upper bound on A, the positive number is
					//	P = fxOneAndAHalf<<(ϕ+1)
					//	  < (2*fxOne)<<(ϕ+1)
					//	  = fxOne<<(ϕ+2)
					//	  = 1<<(2*ϕ+2)
					//
					// For a lower bound on A, the two non-negative numbers are
					//	N = x0f<<(ϕ+1) + oneMinusX0fSquared
					//	  ≤ x0f<<(ϕ+1) + fxOne*fxOne
					//	  = x0f<<(ϕ+1) + 1<<(2*ϕ)
					//	  < x0f<<(ϕ+1) + 1<<(2*ϕ+1)
					//	  ≤ fxOne<<(ϕ+1) + 1<<(2*ϕ+1)
					//	  = 1<<(2*ϕ+1) + 1<<(2*ϕ+1)
					//	  = 1<<(2*ϕ+2)
					//
					// Thus, A ranges up to ±1<<(2*ϕ+2). It is possible to
					// derive a tighter bound, but this bound is sufficient to
					// reason about overflow.
					D := (fxOneAndAHalf-x0f)<<(ϕ+1) - oneMinusX0fSquared // D ranges up to ±1<<(2*ϕ+2).
					D *= d                                               // D ranges up to ±1<<(3*ϕ+2).
					D /= twoOverS
					buf[i] += uint32(D)
				}
				dTimesS := uint32((d << (2 * ϕ)) / oneOverS)
				for xi := x0i + 2; xi < x1i-1; xi++ {
					if i := clamp(xi, width); i < uint(len(buf)) {
						buf[i] += dTimesS
					}
				}

				// This is commented out for the same reason as a0 and am.
				//
				// a2 := a1 + (int1ϕ(x1i-x0i-3)<<(2*ϕ))/oneOverS

				if i := clamp(x1i-1, width); i < uint(len(buf)) {
					// In ideal math:
					//	buf[i] += uint32(d * (fxOne - a2 - am))
					// or equivalently (but better in non-ideal, integer math,
					// with respect to rounding errors),
					//	buf[i] += uint32(A * d / twoOverS)
					// where
					//	A = (fxOne - a2 - am) * twoOverS
					//	  = twoOverS<<ϕ - a2*twoOverS - am*twoOverS
					// Noting that twoOverS/oneOverS equals 2, substituting for
					// am and then a2, given above, yields:
					//	A = twoOverS<<ϕ - a2*twoOverS - x1f*x1f
					//	  = twoOverS<<ϕ - a1*twoOverS - (int1ϕ(x1i-x0i-3)<<(2*ϕ))*2 - x1f*x1f
					//	  = twoOverS<<ϕ - a1*twoOverS - int1ϕ(x1i-x0i-3)<<(2*ϕ+1) - x1f*x1f
					// Substituting for a1, given above, yields:
					//	A = twoOverS<<ϕ - ((fxOneAndAHalf-x0f)<<ϕ)*2 - int1ϕ(x1i-x0i-3)<<(2*ϕ+1) - x1f*x1f
					//	  = twoOverS<<ϕ - (fxOneAndAHalf-x0f)<<(ϕ+1) - int1ϕ(x1i-x0i-3)<<(2*ϕ+1) - x1f*x1f
					//	  = B<<ϕ - x1f*x1f
					// where
					//	B = twoOverS - (fxOneAndAHalf-x0f)<<1 - int1ϕ(x1i-x0i-3)<<(ϕ+1)
					//	  = (x1-x0)<<1 - (fxOneAndAHalf-x0f)<<1 - int1ϕ(x1i-x0i-3)<<(ϕ+1)
					//
					// Re-arranging the defintions given above:
					//	x0Floor := int1ϕ(x0i) << ϕ
					//	x0f := x0 - x0Floor
					//	x1Ceil := int1ϕ(x1i) << ϕ
					//	x1f := x1 - x1Ceil + fxOne
					// combined with fxOne = 1<<ϕ yields:
					//	x0 = x0f + int1ϕ(x0i)<<ϕ
					//	x1 = x1f + int1ϕ(x1i-1)<<ϕ
					// so that expanding (x1-x0) yields:
					//	B = (x1f-x0f + int1ϕ(x1i-x0i-1)<<ϕ)<<1 - (fxOneAndAHalf-x0f)<<1 - int1ϕ(x1i-x0i-3)<<(ϕ+1)
					//	  = (x1f-x0f)<<1 + int1ϕ(x1i-x0i-1)<<(ϕ+1) - (fxOneAndAHalf-x0f)<<1 - int1ϕ(x1i-x0i-3)<<(ϕ+1)
					// A large part of the second and fourth terms cancel:
					//	B = (x1f-x0f)<<1 - (fxOneAndAHalf-x0f)<<1 - int1ϕ(-2)<<(ϕ+1)
					//	  = (x1f-x0f)<<1 - (fxOneAndAHalf-x0f)<<1 + 1<<(ϕ+2)
					//	  = (x1f - fxOneAndAHalf)<<1 + 1<<(ϕ+2)
					// The first term, (x1f - fxOneAndAHalf)<<1, is a negative
					// number, bounded below by -fxOneAndAHalf<<1, which is
					// greater than -fxOne<<2, or -1<<(ϕ+2). Thus, B ranges up
					// to ±1<<(ϕ+2). One final simplification:
					//	B = x1f<<1 + (1<<(ϕ+2) - fxOneAndAHalf<<1)
					const C = 1<<(ϕ+2) - fxOneAndAHalf<<1
					D := x1f<<1 + C // D ranges up to ±1<<(1*ϕ+2).
					D <<= ϕ         // D ranges up to ±1<<(2*ϕ+2).
					D -= x1fSquared // D ranges up to ±1<<(2*ϕ+3).
					D *= d          // D ranges up to ±1<<(3*ϕ+3).
					D /= twoOverS
					buf[i] += uint32(D)
				}
			}

			if i := clamp(x1i, width); i < uint(len(buf)) {
				// In ideal math: buf[i] += uint32(d * am)
				D := x1fSquared // D ranges up to ±1<<(2*ϕ).
				D *= d          // D ranges up to ±1<<(3*ϕ).
				D /= twoOverS
				buf[i] += uint32(D)
			}
		}

		x = xNext
	}
}

func fixedAccumulateOpOver(dst []uint8, src []uint32) {
	// Sanity check that len(dst) >= len(src).
	if len(dst) < len(src) {
		return
	}

	acc := int2ϕ(0)
	for i, v := range src {
		acc += int2ϕ(v)
		a := acc
		if a < 0 {
			a = -a
		}
		a >>= 2*ϕ - 16
		if a > 0xffff {
			a = 0xffff
		}
		// This algorithm comes from the standard library's image/draw package.
		dstA := uint32(dst[i]) * 0x101
		maskA := uint32(a)
		outA := dstA*(0xffff-maskA)/0xffff + maskA
		dst[i] = uint8(outA >> 8)
	}
}

func fixedAccumulateOpSrc(dst []uint8, src []uint32) {
	// Sanity check that len(dst) >= len(src).
	if len(dst) < len(src) {
		return
	}

	acc := int2ϕ(0)
	for i, v := range src {
		acc += int2ϕ(v)
		a := acc
		if a < 0 {
			a = -a
		}
		a >>= 2*ϕ - 8
		if a > 0xff {
			a = 0xff
		}
		dst[i] = uint8(a)
	}
}

func fixedAccumulateMask(buf []uint32) {
	acc := int2ϕ(0)
	for i, v := range buf {
		acc += int2ϕ(v)
		a := acc
		if a < 0 {
			a = -a
		}
		a >>= 2*ϕ - 16
		if a > 0xffff {
			a = 0xffff
		}
		buf[i] = uint32(a)
	}
}