aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/vector/raster_floating.go
blob: fd11db1b4a158a8c0d4af7cb5a6ec2b9a1b630d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package vector

// This file contains a floating point math implementation of the vector
// graphics rasterizer.

import (
	"math"
)

func floatingMax(x, y float32) float32 {
	if x > y {
		return x
	}
	return y
}

func floatingMin(x, y float32) float32 {
	if x < y {
		return x
	}
	return y
}

func floatingFloor(x float32) int32 { return int32(math.Floor(float64(x))) }
func floatingCeil(x float32) int32  { return int32(math.Ceil(float64(x))) }

func (z *Rasterizer) floatingLineTo(bx, by float32) {
	ax, ay := z.penX, z.penY
	z.penX, z.penY = bx, by
	dir := float32(1)
	if ay > by {
		dir, ax, ay, bx, by = -1, bx, by, ax, ay
	}
	// Horizontal line segments yield no change in coverage. Almost horizontal
	// segments would yield some change, in ideal math, but the computation
	// further below, involving 1 / (by - ay), is unstable in floating point
	// math, so we treat the segment as if it was perfectly horizontal.
	if by-ay <= 0.000001 {
		return
	}
	dxdy := (bx - ax) / (by - ay)

	x := ax
	y := floatingFloor(ay)
	yMax := floatingCeil(by)
	if yMax > int32(z.size.Y) {
		yMax = int32(z.size.Y)
	}
	width := int32(z.size.X)

	for ; y < yMax; y++ {
		dy := floatingMin(float32(y+1), by) - floatingMax(float32(y), ay)

		// The "float32" in expressions like "float32(foo*bar)" here and below
		// look redundant, since foo and bar already have type float32, but are
		// explicit in order to disable the compiler's Fused Multiply Add (FMA)
		// instruction selection, which can improve performance but can result
		// in different rounding errors in floating point computations.
		//
		// This package aims to have bit-exact identical results across all
		// GOARCHes, and across pure Go code and assembly, so it disables FMA.
		//
		// See the discussion at
		// https://groups.google.com/d/topic/golang-dev/Sti0bl2xUXQ/discussion
		xNext := x + float32(dy*dxdy)
		if y < 0 {
			x = xNext
			continue
		}
		buf := z.bufF32[y*width:]
		d := float32(dy * dir)
		x0, x1 := x, xNext
		if x > xNext {
			x0, x1 = x1, x0
		}
		x0i := floatingFloor(x0)
		x0Floor := float32(x0i)
		x1i := floatingCeil(x1)
		x1Ceil := float32(x1i)

		if x1i <= x0i+1 {
			xmf := float32(0.5*(x+xNext)) - x0Floor
			if i := clamp(x0i+0, width); i < uint(len(buf)) {
				buf[i] += d - float32(d*xmf)
			}
			if i := clamp(x0i+1, width); i < uint(len(buf)) {
				buf[i] += float32(d * xmf)
			}
		} else {
			s := 1 / (x1 - x0)
			x0f := x0 - x0Floor
			oneMinusX0f := 1 - x0f
			a0 := float32(0.5 * s * oneMinusX0f * oneMinusX0f)
			x1f := x1 - x1Ceil + 1
			am := float32(0.5 * s * x1f * x1f)

			if i := clamp(x0i, width); i < uint(len(buf)) {
				buf[i] += float32(d * a0)
			}

			if x1i == x0i+2 {
				if i := clamp(x0i+1, width); i < uint(len(buf)) {
					buf[i] += float32(d * (1 - a0 - am))
				}
			} else {
				a1 := float32(s * (1.5 - x0f))
				if i := clamp(x0i+1, width); i < uint(len(buf)) {
					buf[i] += float32(d * (a1 - a0))
				}
				dTimesS := float32(d * s)
				for xi := x0i + 2; xi < x1i-1; xi++ {
					if i := clamp(xi, width); i < uint(len(buf)) {
						buf[i] += dTimesS
					}
				}
				a2 := a1 + float32(s*float32(x1i-x0i-3))
				if i := clamp(x1i-1, width); i < uint(len(buf)) {
					buf[i] += float32(d * (1 - a2 - am))
				}
			}

			if i := clamp(x1i, width); i < uint(len(buf)) {
				buf[i] += float32(d * am)
			}
		}

		x = xNext
	}
}

const (
	// almost256 scales a floating point value in the range [0, 1] to a uint8
	// value in the range [0x00, 0xff].
	//
	// 255 is too small. Floating point math accumulates rounding errors, so a
	// fully covered src value that would in ideal math be float32(1) might be
	// float32(1-ε), and uint8(255 * (1-ε)) would be 0xfe instead of 0xff. The
	// uint8 conversion rounds to zero, not to nearest.
	//
	// 256 is too big. If we multiplied by 256, below, then a fully covered src
	// value of float32(1) would translate to uint8(256 * 1), which can be 0x00
	// instead of the maximal value 0xff.
	//
	// math.Float32bits(almost256) is 0x437fffff.
	almost256 = 255.99998

	// almost65536 scales a floating point value in the range [0, 1] to a
	// uint16 value in the range [0x0000, 0xffff].
	//
	// math.Float32bits(almost65536) is 0x477fffff.
	almost65536 = almost256 * 256
)

func floatingAccumulateOpOver(dst []uint8, src []float32) {
	// Sanity check that len(dst) >= len(src).
	if len(dst) < len(src) {
		return
	}

	acc := float32(0)
	for i, v := range src {
		acc += v
		a := acc
		if a < 0 {
			a = -a
		}
		if a > 1 {
			a = 1
		}
		// This algorithm comes from the standard library's image/draw package.
		dstA := uint32(dst[i]) * 0x101
		maskA := uint32(almost65536 * a)
		outA := dstA*(0xffff-maskA)/0xffff + maskA
		dst[i] = uint8(outA >> 8)
	}
}

func floatingAccumulateOpSrc(dst []uint8, src []float32) {
	// Sanity check that len(dst) >= len(src).
	if len(dst) < len(src) {
		return
	}

	acc := float32(0)
	for i, v := range src {
		acc += v
		a := acc
		if a < 0 {
			a = -a
		}
		if a > 1 {
			a = 1
		}
		dst[i] = uint8(almost256 * a)
	}
}

func floatingAccumulateMask(dst []uint32, src []float32) {
	// Sanity check that len(dst) >= len(src).
	if len(dst) < len(src) {
		return
	}

	acc := float32(0)
	for i, v := range src {
		acc += v
		a := acc
		if a < 0 {
			a = -a
		}
		if a > 1 {
			a = 1
		}
		dst[i] = uint32(almost65536 * a)
	}
}