aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/vector/vector.go
blob: 852a4f8b7c930745075332438f1c170e0f4d5fcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:generate go run gen.go
//go:generate asmfmt -w acc_amd64.s

// asmfmt is https://github.com/klauspost/asmfmt

// Package vector provides a rasterizer for 2-D vector graphics.
package vector // import "golang.org/x/image/vector"

// The rasterizer's design follows
// https://medium.com/@raphlinus/inside-the-fastest-font-renderer-in-the-world-75ae5270c445
//
// Proof of concept code is in
// https://github.com/google/font-go
//
// See also:
// http://nothings.org/gamedev/rasterize/
// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
// https://people.gnome.org/~mathieu/libart/internals.html#INTERNALS-SCANLINE

import (
	"image"
	"image/color"
	"image/draw"
	"math"
)

// floatingPointMathThreshold is the width or height above which the rasterizer
// chooses to used floating point math instead of fixed point math.
//
// Both implementations of line segmentation rasterization (see raster_fixed.go
// and raster_floating.go) implement the same algorithm (in ideal, infinite
// precision math) but they perform differently in practice. The fixed point
// math version is roughtly 1.25x faster (on GOARCH=amd64) on the benchmarks,
// but at sufficiently large scales, the computations will overflow and hence
// show rendering artifacts. The floating point math version has more
// consistent quality over larger scales, but it is significantly slower.
//
// This constant determines when to use the faster implementation and when to
// use the better quality implementation.
//
// The rationale for this particular value is that TestRasterizePolygon in
// vector_test.go checks the rendering quality of polygon edges at various
// angles, inscribed in a circle of diameter 512. It may be that a higher value
// would still produce acceptable quality, but 512 seems to work.
const floatingPointMathThreshold = 512

func lerp(t, px, py, qx, qy float32) (x, y float32) {
	return px + t*(qx-px), py + t*(qy-py)
}

func clamp(i, width int32) uint {
	if i < 0 {
		return 0
	}
	if i < width {
		return uint(i)
	}
	return uint(width)
}

// NewRasterizer returns a new Rasterizer whose rendered mask image is bounded
// by the given width and height.
func NewRasterizer(w, h int) *Rasterizer {
	z := &Rasterizer{}
	z.Reset(w, h)
	return z
}

// Raster is a 2-D vector graphics rasterizer.
//
// The zero value is usable, in that it is a Rasterizer whose rendered mask
// image has zero width and zero height. Call Reset to change its bounds.
type Rasterizer struct {
	// bufXxx are buffers of float32 or uint32 values, holding either the
	// individual or cumulative area values.
	//
	// We don't actually need both values at any given time, and to conserve
	// memory, the integration of the individual to the cumulative could modify
	// the buffer in place. In other words, we could use a single buffer, say
	// of type []uint32, and add some math.Float32bits and math.Float32frombits
	// calls to satisfy the compiler's type checking. As of Go 1.7, though,
	// there is a performance penalty between:
	//	bufF32[i] += x
	// and
	//	bufU32[i] = math.Float32bits(x + math.Float32frombits(bufU32[i]))
	//
	// See golang.org/issue/17220 for some discussion.
	bufF32 []float32
	bufU32 []uint32

	useFloatingPointMath bool

	size   image.Point
	firstX float32
	firstY float32
	penX   float32
	penY   float32

	// DrawOp is the operator used for the Draw method.
	//
	// The zero value is draw.Over.
	DrawOp draw.Op

	// TODO: an exported field equivalent to the mask point in the
	// draw.DrawMask function in the stdlib image/draw package?
}

// Reset resets a Rasterizer as if it was just returned by NewRasterizer.
//
// This includes setting z.DrawOp to draw.Over.
func (z *Rasterizer) Reset(w, h int) {
	z.size = image.Point{w, h}
	z.firstX = 0
	z.firstY = 0
	z.penX = 0
	z.penY = 0
	z.DrawOp = draw.Over

	z.setUseFloatingPointMath(w > floatingPointMathThreshold || h > floatingPointMathThreshold)
}

func (z *Rasterizer) setUseFloatingPointMath(b bool) {
	z.useFloatingPointMath = b

	// Make z.bufF32 or z.bufU32 large enough to hold width * height samples.
	if z.useFloatingPointMath {
		if n := z.size.X * z.size.Y; n > cap(z.bufF32) {
			z.bufF32 = make([]float32, n)
		} else {
			z.bufF32 = z.bufF32[:n]
			for i := range z.bufF32 {
				z.bufF32[i] = 0
			}
		}
	} else {
		if n := z.size.X * z.size.Y; n > cap(z.bufU32) {
			z.bufU32 = make([]uint32, n)
		} else {
			z.bufU32 = z.bufU32[:n]
			for i := range z.bufU32 {
				z.bufU32[i] = 0
			}
		}
	}
}

// Size returns the width and height passed to NewRasterizer or Reset.
func (z *Rasterizer) Size() image.Point {
	return z.size
}

// Bounds returns the rectangle from (0, 0) to the width and height passed to
// NewRasterizer or Reset.
func (z *Rasterizer) Bounds() image.Rectangle {
	return image.Rectangle{Max: z.size}
}

// Pen returns the location of the path-drawing pen: the last argument to the
// most recent XxxTo call.
func (z *Rasterizer) Pen() (x, y float32) {
	return z.penX, z.penY
}

// ClosePath closes the current path.
func (z *Rasterizer) ClosePath() {
	z.LineTo(z.firstX, z.firstY)
}

// MoveTo starts a new path and moves the pen to (ax, ay).
//
// The coordinates are allowed to be out of the Rasterizer's bounds.
func (z *Rasterizer) MoveTo(ax, ay float32) {
	z.firstX = ax
	z.firstY = ay
	z.penX = ax
	z.penY = ay
}

// LineTo adds a line segment, from the pen to (bx, by), and moves the pen to
// (bx, by).
//
// The coordinates are allowed to be out of the Rasterizer's bounds.
func (z *Rasterizer) LineTo(bx, by float32) {
	if z.useFloatingPointMath {
		z.floatingLineTo(bx, by)
	} else {
		z.fixedLineTo(bx, by)
	}
}

// QuadTo adds a quadratic Bézier segment, from the pen via (bx, by) to (cx,
// cy), and moves the pen to (cx, cy).
//
// The coordinates are allowed to be out of the Rasterizer's bounds.
func (z *Rasterizer) QuadTo(bx, by, cx, cy float32) {
	ax, ay := z.penX, z.penY
	devsq := devSquared(ax, ay, bx, by, cx, cy)
	if devsq >= 0.333 {
		const tol = 3
		n := 1 + int(math.Sqrt(math.Sqrt(tol*float64(devsq))))
		t, nInv := float32(0), 1/float32(n)
		for i := 0; i < n-1; i++ {
			t += nInv
			abx, aby := lerp(t, ax, ay, bx, by)
			bcx, bcy := lerp(t, bx, by, cx, cy)
			z.LineTo(lerp(t, abx, aby, bcx, bcy))
		}
	}
	z.LineTo(cx, cy)
}

// CubeTo adds a cubic Bézier segment, from the pen via (bx, by) and (cx, cy)
// to (dx, dy), and moves the pen to (dx, dy).
//
// The coordinates are allowed to be out of the Rasterizer's bounds.
func (z *Rasterizer) CubeTo(bx, by, cx, cy, dx, dy float32) {
	ax, ay := z.penX, z.penY
	devsq := devSquared(ax, ay, bx, by, dx, dy)
	if devsqAlt := devSquared(ax, ay, cx, cy, dx, dy); devsq < devsqAlt {
		devsq = devsqAlt
	}
	if devsq >= 0.333 {
		const tol = 3
		n := 1 + int(math.Sqrt(math.Sqrt(tol*float64(devsq))))
		t, nInv := float32(0), 1/float32(n)
		for i := 0; i < n-1; i++ {
			t += nInv
			abx, aby := lerp(t, ax, ay, bx, by)
			bcx, bcy := lerp(t, bx, by, cx, cy)
			cdx, cdy := lerp(t, cx, cy, dx, dy)
			abcx, abcy := lerp(t, abx, aby, bcx, bcy)
			bcdx, bcdy := lerp(t, bcx, bcy, cdx, cdy)
			z.LineTo(lerp(t, abcx, abcy, bcdx, bcdy))
		}
	}
	z.LineTo(dx, dy)
}

// devSquared returns a measure of how curvy the sequence (ax, ay) to (bx, by)
// to (cx, cy) is. It determines how many line segments will approximate a
// Bézier curve segment.
//
// http://lists.nongnu.org/archive/html/freetype-devel/2016-08/msg00080.html
// gives the rationale for this evenly spaced heuristic instead of a recursive
// de Casteljau approach:
//
// The reason for the subdivision by n is that I expect the "flatness"
// computation to be semi-expensive (it's done once rather than on each
// potential subdivision) and also because you'll often get fewer subdivisions.
// Taking a circular arc as a simplifying assumption (ie a spherical cow),
// where I get n, a recursive approach would get 2^⌈lg n⌉, which, if I haven't
// made any horrible mistakes, is expected to be 33% more in the limit.
func devSquared(ax, ay, bx, by, cx, cy float32) float32 {
	devx := ax - 2*bx + cx
	devy := ay - 2*by + cy
	return devx*devx + devy*devy
}

// Draw implements the Drawer interface from the standard library's image/draw
// package.
//
// The vector paths previously added via the XxxTo calls become the mask for
// drawing src onto dst.
func (z *Rasterizer) Draw(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
	// TODO: adjust r and sp (and mp?) if src.Bounds() doesn't contain
	// r.Add(sp.Sub(r.Min)).

	if src, ok := src.(*image.Uniform); ok {
		srcR, srcG, srcB, srcA := src.RGBA()
		switch dst := dst.(type) {
		case *image.Alpha:
			// Fast path for glyph rendering.
			if srcA == 0xffff {
				if z.DrawOp == draw.Over {
					z.rasterizeDstAlphaSrcOpaqueOpOver(dst, r)
				} else {
					z.rasterizeDstAlphaSrcOpaqueOpSrc(dst, r)
				}
				return
			}
		case *image.RGBA:
			if z.DrawOp == draw.Over {
				z.rasterizeDstRGBASrcUniformOpOver(dst, r, srcR, srcG, srcB, srcA)
			} else {
				z.rasterizeDstRGBASrcUniformOpSrc(dst, r, srcR, srcG, srcB, srcA)
			}
			return
		}
	}

	if z.DrawOp == draw.Over {
		z.rasterizeOpOver(dst, r, src, sp)
	} else {
		z.rasterizeOpSrc(dst, r, src, sp)
	}
}

func (z *Rasterizer) accumulateMask() {
	if z.useFloatingPointMath {
		if n := z.size.X * z.size.Y; n > cap(z.bufU32) {
			z.bufU32 = make([]uint32, n)
		} else {
			z.bufU32 = z.bufU32[:n]
		}
		if haveFloatingAccumulateSIMD {
			floatingAccumulateMaskSIMD(z.bufU32, z.bufF32)
		} else {
			floatingAccumulateMask(z.bufU32, z.bufF32)
		}
	} else {
		if haveFixedAccumulateSIMD {
			fixedAccumulateMaskSIMD(z.bufU32)
		} else {
			fixedAccumulateMask(z.bufU32)
		}
	}
}

func (z *Rasterizer) rasterizeDstAlphaSrcOpaqueOpOver(dst *image.Alpha, r image.Rectangle) {
	// TODO: non-zero vs even-odd winding?
	if r == dst.Bounds() && r == z.Bounds() {
		// We bypass the z.accumulateMask step and convert straight from
		// z.bufF32 or z.bufU32 to dst.Pix.
		if z.useFloatingPointMath {
			if haveFloatingAccumulateSIMD {
				floatingAccumulateOpOverSIMD(dst.Pix, z.bufF32)
			} else {
				floatingAccumulateOpOver(dst.Pix, z.bufF32)
			}
		} else {
			if haveFixedAccumulateSIMD {
				fixedAccumulateOpOverSIMD(dst.Pix, z.bufU32)
			} else {
				fixedAccumulateOpOver(dst.Pix, z.bufU32)
			}
		}
		return
	}

	z.accumulateMask()
	pix := dst.Pix[dst.PixOffset(r.Min.X, r.Min.Y):]
	for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
		for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
			ma := z.bufU32[y*z.size.X+x]
			i := y*dst.Stride + x

			// This formula is like rasterizeOpOver's, simplified for the
			// concrete dst type and opaque src assumption.
			a := 0xffff - ma
			pix[i] = uint8((uint32(pix[i])*0x101*a/0xffff + ma) >> 8)
		}
	}
}

func (z *Rasterizer) rasterizeDstAlphaSrcOpaqueOpSrc(dst *image.Alpha, r image.Rectangle) {
	// TODO: non-zero vs even-odd winding?
	if r == dst.Bounds() && r == z.Bounds() {
		// We bypass the z.accumulateMask step and convert straight from
		// z.bufF32 or z.bufU32 to dst.Pix.
		if z.useFloatingPointMath {
			if haveFloatingAccumulateSIMD {
				floatingAccumulateOpSrcSIMD(dst.Pix, z.bufF32)
			} else {
				floatingAccumulateOpSrc(dst.Pix, z.bufF32)
			}
		} else {
			if haveFixedAccumulateSIMD {
				fixedAccumulateOpSrcSIMD(dst.Pix, z.bufU32)
			} else {
				fixedAccumulateOpSrc(dst.Pix, z.bufU32)
			}
		}
		return
	}

	z.accumulateMask()
	pix := dst.Pix[dst.PixOffset(r.Min.X, r.Min.Y):]
	for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
		for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
			ma := z.bufU32[y*z.size.X+x]

			// This formula is like rasterizeOpSrc's, simplified for the
			// concrete dst type and opaque src assumption.
			pix[y*dst.Stride+x] = uint8(ma >> 8)
		}
	}
}

func (z *Rasterizer) rasterizeDstRGBASrcUniformOpOver(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
	z.accumulateMask()
	pix := dst.Pix[dst.PixOffset(r.Min.X, r.Min.Y):]
	for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
		for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
			ma := z.bufU32[y*z.size.X+x]

			// This formula is like rasterizeOpOver's, simplified for the
			// concrete dst type and uniform src assumption.
			a := 0xffff - (sa * ma / 0xffff)
			i := y*dst.Stride + 4*x
			pix[i+0] = uint8(((uint32(pix[i+0])*0x101*a + sr*ma) / 0xffff) >> 8)
			pix[i+1] = uint8(((uint32(pix[i+1])*0x101*a + sg*ma) / 0xffff) >> 8)
			pix[i+2] = uint8(((uint32(pix[i+2])*0x101*a + sb*ma) / 0xffff) >> 8)
			pix[i+3] = uint8(((uint32(pix[i+3])*0x101*a + sa*ma) / 0xffff) >> 8)
		}
	}
}

func (z *Rasterizer) rasterizeDstRGBASrcUniformOpSrc(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
	z.accumulateMask()
	pix := dst.Pix[dst.PixOffset(r.Min.X, r.Min.Y):]
	for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
		for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
			ma := z.bufU32[y*z.size.X+x]

			// This formula is like rasterizeOpSrc's, simplified for the
			// concrete dst type and uniform src assumption.
			i := y*dst.Stride + 4*x
			pix[i+0] = uint8((sr * ma / 0xffff) >> 8)
			pix[i+1] = uint8((sg * ma / 0xffff) >> 8)
			pix[i+2] = uint8((sb * ma / 0xffff) >> 8)
			pix[i+3] = uint8((sa * ma / 0xffff) >> 8)
		}
	}
}

func (z *Rasterizer) rasterizeOpOver(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
	z.accumulateMask()
	out := color.RGBA64{}
	outc := color.Color(&out)
	for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
		for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
			sr, sg, sb, sa := src.At(sp.X+x, sp.Y+y).RGBA()
			ma := z.bufU32[y*z.size.X+x]

			// This algorithm comes from the standard library's image/draw
			// package.
			dr, dg, db, da := dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
			a := 0xffff - (sa * ma / 0xffff)
			out.R = uint16((dr*a + sr*ma) / 0xffff)
			out.G = uint16((dg*a + sg*ma) / 0xffff)
			out.B = uint16((db*a + sb*ma) / 0xffff)
			out.A = uint16((da*a + sa*ma) / 0xffff)

			dst.Set(r.Min.X+x, r.Min.Y+y, outc)
		}
	}
}

func (z *Rasterizer) rasterizeOpSrc(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
	z.accumulateMask()
	out := color.RGBA64{}
	outc := color.Color(&out)
	for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
		for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
			sr, sg, sb, sa := src.At(sp.X+x, sp.Y+y).RGBA()
			ma := z.bufU32[y*z.size.X+x]

			// This algorithm comes from the standard library's image/draw
			// package.
			out.R = uint16(sr * ma / 0xffff)
			out.G = uint16(sg * ma / 0xffff)
			out.B = uint16(sb * ma / 0xffff)
			out.A = uint16(sa * ma / 0xffff)

			dst.Set(r.Min.X+x, r.Min.Y+y, outc)
		}
	}
}