aboutsummaryrefslogtreecommitdiff
path: root/orrs/uv.tex
blob: 53f8675adf1f1de8f28b26b264f7d23b3276ee63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
\documentstyle[12pt]{article}

\pagestyle{plain}

 \topmargin 0in  \headheight 0pt  \headsep 0pt  \raggedbottom
 \oddsidemargin 0in 
 \textheight 9.25in  \textwidth 6.0in 
 \parskip 5pt plus 1pt minus 1pt
 \def \baselinestretch {1.0}   % single spaced
 \setlength {\unitlength} {1.0in}

\begin{document}

\def \ei    {{e^{i(\alpha x - \omega t)}}}
\def \eiax  {{e^{- \alpha_i x}}}
\def \eitax {{e^{-2\alpha_i x}}}

\def \cwt {\cos (\,)}
\def \swt {\sin (\,)}
\def \cqwt {\cos^2 (\,)}
\def \sqwt {\sin^2 (\,)}

\def \thalf {{\textstyle \frac{1}{2}}}

\def \d {\partial}

\def \beqa {\begin{eqnarray*}}
\def \eeqa {\end{eqnarray*}}

\def \strut {\rule{0em}{2.0ex}}

\beqa
\alpha &=& \alpha_r + i \alpha_i  \\
\omega &=& \omega_r
\eeqa
\beqa
\cwt & \equiv & \cos( \alpha_r x - \omega_r t)  \\[0.25em]
\swt & \equiv & \sin( \alpha_r x - \omega_r t)
\eeqa
\beqa
u' \;=\; \Re \left[ (u_r + i u_i ) \, \ei \right] &=&
  \left( u_r \cwt - u_i \swt \strut \right) \eiax \\[0.5em]
v' \;=\; \Re \left[ (v_r + i v_i ) \, \ei \right] &=&
  \left( v_r \cwt - v_i \swt \strut \right) \eiax \\[0.5em]
p' \;=\; \Re \left[ (p_r + i p_i ) \, \ei \right] &=&
  \left( p_r \cwt - p_i \swt \strut \right) \eiax
\eeqa
\beqa
u'v' & = & \left( u_r v_r \cqwt \,+\, u_i v_i \sqwt \:-\:
  (u_r v_i + u_i v_r) \swt \cwt \right) \eitax \\[0.5em]
{u'}^2 & = & \left( u_r^2 \cqwt \,+\, u_i^2 \sqwt \:-\:
  2 u_r u_i \swt \cwt \right) \eitax \\[0.5em]
{v'}^2 & = & \left( v_r^2 \cqwt \,+\, v_i^2 \sqwt \:-\:
  2 v_r v_i \swt \cwt \right) \eitax
\eeqa
\beqa
\overline{ u'v' } &=& \thalf \left( u_r v_r + u_i v_i \strut \right)
  \eitax \\[0.5em]
\overline{{u'}^2} &=& \thalf \left( u_r^2 + u_i^2 \right)
  \eitax \\[0.5em]
\overline{{v'}^2} &=& \thalf \left( v_r^2 + v_i^2 \right)
  \eitax
\eeqa
\beqa
\frac{\d u'}{\d x}  &=&
\Re \!\left[ (i \alpha_r - \alpha_i )
        \left(u_r + i u_i \strut \right) \, \ei \right]
\;=\; \left( -(\alpha_i u_r + \alpha_r u_i) \cwt
        \:-\: (\alpha_r u_r - \alpha_i u_i) \swt \strut \right) \eiax \\[0.5em]
%
\frac{\d v'}{\d x}  &=&
\Re \!\left[ (i \alpha_r - \alpha_i )
        \left(v_r + i v_i \strut \right) \, \ei \right]
\;=\; \left( -(\alpha_i v_r + \alpha_r v_i) \cwt
        \:-\: (\alpha_r v_r - \alpha_i v_i) \swt \strut \right) \eiax \\[0.5em]
%
\frac{\d u'}{\d y}  &=&
\Re \!\left[ \left(Du_r + i Du_i \strut \right) \, \ei \right]
\;=\;  \left( Du_r \cwt - Du_i \swt \strut \right) \eiax \\[0.5em]
\frac{\d v'}{\d y}  &=&
\Re \!\left[ \left(Dv_r + i Dv_i \strut \right) \, \ei \right]
\;=\;  \left( Dv_r \cwt - Dv_i \swt \strut \right) \eiax
\eeqa
\beqa
\nabla^2 u' &=& -\frac{\d \omega'}{\d y}
\;=\;  \left(-D\omega_r \cwt + D\omega_i \swt \strut \right) \eiax \\[0.5em]
\nabla^2 v' &=& \;\; \frac{\d \omega'}{\d x}
\;=\; \left( -(\alpha_i \omega_r + \alpha_r \omega_i) \cwt
        \:-\: (\alpha_r \omega_r - \alpha_i \omega_i) \swt \strut \right) \eiax
\eeqa
\newpage

\beqa
Q &=& \int \thalf \left(\overline{{u'}^2 + {v'}^2} \right) \bar{u} \, dy \;=\;
 \int {\textstyle \frac{1}{4}} 
  \left( u_r^2 + u_i^2 + v_r^2 + v_i^2 \right) \bar{u} \, dy 
          \;\; \eitax \\[0.75em]
\frac{dQ}{dx} &=& \int \left( 
  \overline{u' {\textstyle \frac{\d u'}{\d x}}} \:+\:
  \overline{v' {\textstyle \frac{\d v'}{\d x}}}   \right) \bar{u} \, dy
\;=\; \int \thalf \left[ 
      - u_r ( \alpha_i u_r + \alpha_r u_i )
  \:+\: u_i ( \alpha_r u_r - \alpha_i u_i ) \rule{0ex}{3ex} \right. \\
& & \hspace{29.0ex} \left. \rule{0ex}{3ex}
    -\: v_r ( \alpha_i v_r + \alpha_r v_i )
  \:+\: v_i ( \alpha_r v_r - \alpha_i v_i ) \right] \bar{u} \, dy
\;\; \eitax
\eeqa
\beqa
\epsilon &=& \nu \left[
      2 \overline{\textstyle \left( \frac{\d u'}{\d x} \right)^2 }
\:+\: 2 \overline{\textstyle \left( \frac{\d v'}{\d y} \right)^2 }
\:+\:   \overline{\textstyle \left( \frac{\d u'}{\d y}
                                   +\frac{\d v'}{\d x} \right)^2 }  \right] \\
%
&=& \nu \left[ \rule{0ex}{3ex}
      (\alpha_i u_r + \alpha_r u_i)^2
\:+\: (\alpha_r u_r - \alpha_i u_i)^2
\:+\: (Dv_r)^2 + (Dv_i)^2  \right. \\
& & \hspace{3ex} \left. \rule{0ex}{3ex}
\;+\; \thalf ( Du_r - \alpha_i v_r - \alpha_r v_i)^2
\:+\: \thalf ( Du_i + \alpha_r v_r - \alpha_i v_i)^2  \right]
\;\;\; \eitax
\eeqa
\beqa
{\cal D}_x \;=\; \frac{\d}{\d x} \! \left\{ 
 \overline{ u' \left[ p' + \thalf ( {u'}^2 + {v'}^2 ) \right] } 
                     \right\} &=&
\overline{ \textstyle \frac{\d u'}{\d x} 
          \left[ p' + \thalf ( {u'}^2 + {v'}^2 ) \right] }  \:+\:
\overline{ \textstyle  u' \left[ \frac{\d p'}{\d x}
             + u' \frac{\d u'}{\d x} + v' \frac{\d v'}{\d x} \right] } \\
&=&  \thalf \left[
      - p_r ( \alpha_i u_r + \alpha_r u_i )
  \:+\: p_i ( \alpha_r u_r - \alpha_i u_i ) \rule{0ex}{3ex} \right. \\
& & \left. \hspace{2.5ex}
      - u_r ( \alpha_i p_r + \alpha_r p_i )
  \:+\: u_i ( \alpha_r p_r - \alpha_i p_i ) \rule{0ex}{3ex} \right]
\;\; \eitax
\eeqa
\beqa
\Pi_q \;=\; \nu \left( u' \nabla^2 u' \,+\, v' \nabla^2 v' \right) 
&=& \thalf \, \nu \left[ -u_r D\omega_r - u_i D\omega_i
 \:-\: v_r ( \alpha_i \omega_r + \alpha_r \omega_i )
 \:+\: v_i ( \alpha_r \omega_r - \alpha_i \omega_i ) \rule{0ex}{3ex} \right]
\eeqa

\beqa
\frac{dQ}{dx} &=& \int -\overline{u'v'} \, d\bar{u} 
 \;-\; \int {\cal D}_x \, dy \;+\; \int \Pi_q \, dy
\eeqa
\end{document}