aboutsummaryrefslogtreecommitdiff
path: root/src/profil.f
blob: 91cb5eb67896da8916449195972b48caa67aeaf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
C***********************************************************************
C    Module:  profil.f
C 
C    Copyright (C) 2000 Mark Drela 
C 
C    This program is free software; you can redistribute it and/or modify
C    it under the terms of the GNU General Public License as published by
C    the Free Software Foundation; either version 2 of the License, or
C    (at your option) any later version.
C
C    This program is distributed in the hope that it will be useful,
C    but WITHOUT ANY WARRANTY; without even the implied warranty of
C    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C    GNU General Public License for more details.
C
C    You should have received a copy of the GNU General Public License
C    along with this program; if not, write to the Free Software
C    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***********************************************************************

      SUBROUTINE PRWALL(DSTAR,THETA,UO,RT,MS,CT, BB,
     &                  DO, DO_DS, DO_TH, DO_UO, DO_RT, DO_MS,
     &                  UI, UI_DS, UI_TH, UI_UO, UI_RT, UI_MS,
     &                  HS, HS_DS, HS_TH, HS_UO, HS_RT, HS_MS,
     &                  CF, CF_DS, CF_TH, CF_UO, CF_RT, CF_MS,
     &                  CD, CD_DS, CD_TH, CD_UO, CD_RT, CD_MS, CD_CT )
      IMPLICIT REAL (A-H,M,O-Z)
C================================================================
C     Returns wall slip velocity and thickness of wall BL profile
C
C     Input:
C        DSTAR  kinematic displacement thickness
C        THETA  kinematic momentum thickness
C        RT     momentum thickness based on ue and THETA
C        MS     Mach^2 based on ue
C
C        UO     uo/ue outer velocity;  assumed = 1  in this version
C
C     Output:
C        BB     outer profile exponent
C        DO     thickness of profile deck
C        UI     inner "slip" velocity
C        CF     wall skin friction
C================================================================
C
      PARAMETER (N=65)
      DIMENSION ETA(N), UIP(N), UIP_DP(N), G(N), G_BB(N)
C
C---- pi/2 ,  2/pi
      DATA HPI, TOPI / 1.570796327 , 0.6366197723 /
C
      DATA T, SQT / 0.28 , 0.5291502622 /
C
C---- TCON = ( atan(T^1/2) / T^1/2  -  1/(1+T)) / (2T)  +  0.5/(1.0 + T) 
C                - atan(1/T^1/2) / 2T^1/2
      DATA TCON / -0.3864027035 /
C       
C---- slip velocity coefficient
      DATA AK / 0.09 /
C
C---- log-law constants
      DATA VKAP, VB / 0.40 , 5.0 /
C
      HK = DSTAR/THETA
C
      UO = 1.0
      BB = 1.0
C
C---- initialize variables
      CALL CFT(HK,RT,MS,CF,CF_HK,CF_RT,CF_MS)
      SGN = SIGN( 1.0 , CF )
      UT = SGN * SQRT(0.5*ABS(CF))
C
      UI = MIN( UT/AK * HPI , 0.90 )
      DO = HK*THETA / (1.0 - 0.5*(UO+UI))
C
      EBK = EXP(-VB*VKAP)
C
      DO 1000 ITER=1, 12
C
        SGN = SIGN( 1.0 , UT )
C
C------ set d+ = DP(UT DO ; RT TH)
        DP    = SGN * UT*RT*DO/THETA
        DP_DO = SGN * UT*RT   /THETA
        DP_UT = SGN *    RT*DO/THETA
C
        DP_TH = -DP/THETA
        DP_RT = SGN * UT   *DO/THETA
        DP_MS = 0.0
C
C------ estimate inner profile edge velocity Ui+ using log-law
        UPE = LOG(DP)/VKAP + VB
C
C------ converge exact Ui+ using Spalding formula
        DO 10 ITUP=1, 5
          UK = UPE*VKAP
          ARG = UK - VB*VKAP
          EXU = EXP(ARG)
          REZ  = UPE +  EXU - EBK*(1.0 + UK + UK*UK/2.0 + UK*UK*UK/6.0)
     &         - DP
          DP_U = 1.0 + (EXU - EBK*(1.0 + UK + UK*UK/2.0))*VKAP
C
          IF(ABS(REZ/DP) .LT. 1.0E-5) GO TO 11
C
          DUPE = -REZ/DP_U
          UPE = UPE + DUPE
 10     CONTINUE
        WRITE(*,*) 'PRWALL: Ue+ convergence failed,  Res =', REZ/DP
 11     CONTINUE
C
        UPE_DP = 1.0/DP_U
C
C            2      2        3      3
C------ set d y+/du+   and  d y+/du+   at BL edge
        DP_UU  = (EXU - EBK*(1.0 + UK))*VKAP**2
        DP_UUU = (EXU - EBK           )*VKAP**3
C
C------ set  du+/dy+  at BL edge
        UPD    = 1.0/DP_U
        UPD_DP = (-1.0/DP_U**3) * DP_UU
C
C             2      2
C------ set  d u+/dy+   at BL edge
CCC     UPD_DP = (-1.0/DP_U**3) * DP_UU
        UPDD    = UPD_DP
        UPDD_DP = (-1.0/DP_U**4) * DP_UUU
     &          + ( 3.0/DP_U**5) * DP_UU**2
C
C------ set coefficients for Spalding profile correction polynomial
        DC2    = 0.5*DP*DP*UPDD    - DP*UPD
        DC2_DP =        DP*UPDD    -    UPD
     &         + 0.5*DP*DP*UPDD_DP - DP*UPD_DP
C
        DC3    = -(  DP*DP*UPDD    - DP*UPD   ) / 3.0
        DC3_DP = -(2.0 *DP*UPDD    -    UPD   ) / 3.0
     &           -(  DP*DP*UPDD_DP - DP*UPD_DP) / 3.0
C
C------ set outer profile amplitude DUO
        DUO    = UO - UT*(UPE    + DC2    + DC3   )
        DUO_DP =    - UT*(UPE_DP + DC2_DP + DC3_DP)
C
        DUO_UT =    -    (UPE    + DC2    + DC3   )
     &         + DUO_DP*DP_UT
        DUO_DO = DUO_DP*DP_DO
C
        DUO_TH = DUO_DP*DP_TH
        DUO_RT = DUO_DP*DP_RT
        DUO_MS = DUO_DP*DP_MS
c
c        write(*,*) 'dUo', duo, duo_dp, duo_ut, duo_do
c        read(*,*) ddo, dut
c        if(ddo.ne.0.0 .or. dut.ne.0.0) then
c          do = do+ddo
c          ut = ut+dut
c          write(*,*) 'new', duo + duo_do*ddo + duo_ut*dut
c          go to 666
c        endif
C
C------ set wake profile coefficients
        BB1    =  3.0*(BB    +2.0)*(BB+3.0)/(BB+7.0)
        BB1_BB =  3.0*(BB*2.0+5.0         )/(BB+7.0) - BB1/(BB+7.0)
        BB2    = -5.0*(BB    +1.0)*(BB+3.0)/(BB+7.0)
        BB2_BB = -5.0*(BB*2.0+4.0         )/(BB+7.0) - BB2/(BB+7.0)
        BB3    =  2.0*(BB    +1.0)*(BB+2.0)/(BB+7.0)
        BB3_BB =  2.0*(BB*2.0+3.0         )/(BB+7.0) - BB3/(BB+7.0)
C
C------ fill eta coordinate and inner profile arrays
CCC     EXUPE = EXP(UPE*VKAP - VB*VKAP)
        EXUPE = EXU
C
        DEXU = (EXUPE - EBK)/FLOAT(N-1)
C
        I = 1
        UIP(I)    = 0.0
        UIP_DP(I) = 0.0
        G(I)    = 0.0
        G_BB(I) = 0.0
C
        DO 20 I=2, N
ccc       EXU = EBK + DEXU*FLOAT(I-1)
          EXU = EBK + (DEXU - 0.75*DEXU*FLOAT(N-I)/FLOAT(N-1))
     &                *FLOAT(I-1)
C
CCC       UK = UP*VKAP
          UK = LOG(EXU) + VB*VKAP
C
          UP = UK/VKAP
C
C-------- set "inverse" Spalding profile  y+(u+)  and derivatives
          YP    =  UP +  EXU - EBK*(1.0 + UK + UK*UK/2.0 + UK*UK*UK/6.0)
          YP_U  = 1.0 + (EXU - EBK*(1.0 + UK + UK*UK/2.0))*VKAP
          YP_UU =       (EXU - EBK*(1.0 + UK            ))*VKAP**2
C
          ET = YP/DP
C
C-------- set final inner profile (fudged Spalding)
          UIP(I)     = UP       +     DC2   *ET**2 +     DC3   *ET**3
          UIP_DP(I)  =                DC2_DP*ET**2 +     DC3_DP*ET**3
C
ccc          UIPD(I)    = 1.0/YP_U + 2.0*DC2   *ET    + 3.0*DC3   *ET**2
ccc          UIPD_DP(I) = (-1.0/YP_U**3)*YPUU
ccc     &                          + 2.0*DC2_DP*ET    + 3.0*DC3_DP*ET**2
C
C-------- set outer profile
          ETB = ET**BB
          ALE = LOG(ET)
C
ccc          G(I)    =  2.0*ETB -     ETB**2
ccc          G_BB(I) = (2.0*ETB - 2.0*ETB**2)*ALE
C
          G(I)    = (BB1   *ET + BB2   *ET**2 + BB3   *ET**3)*ETB
          G_BB(I) = (BB1_BB*ET + BB2_BB*ET**2 + BB3_BB*ET**3)*ETB
     &            + G(I)*ALE
C
          ETA(I) = ET
C
 20     CONTINUE
C
C
        DSN    = 0.0
        DSN_DO = 0.0
        DSN_UT = 0.0
        DSN_BB = 0.0
C
        DSN_TH = 0.0
        DSN_RT = 0.0
        DSN_MS = 0.0
C
C
        THN    = 0.0
        THN_DO = 0.0
        THN_UT = 0.0
        THN_BB = 0.0
C
        THN_TH = 0.0
        THN_RT = 0.0
        THN_MS = 0.0
C
c        TSN    = 0.0
c        TSN_DO = 0.0
c        TSN_UT = 0.0
c        TSN_BB = 0.0
c
c        TSN_TH = 0.0
c        TSN_RT = 0.0
c        TSN_MS = 0.0
C
C------ perform integration
        DO 100 I=1, N-1
          DETA = ETA(I+1) - ETA(I)
          GA    = 0.5*(G(I+1)    + G(I)   )
          GA_BB = 0.5*(G_BB(I+1) + G_BB(I))
C
          UIPA    = 0.5*(UIP(I+1)    + UIP(I)   )
          UIPA_DP = 0.5*(UIP_DP(I+1) + UIP_DP(I))
C
          U    = UT*UIPA    + DUO   *GA
          U_DP = UT*UIPA_DP
C
          U_DO =              DUO_DO*GA + U_DP*DP_DO
          U_UT =    UIPA    + DUO_UT*GA + U_DP*DP_UT
          U_BB =              DUO   *GA_BB
C
          U_TH =              DUO_TH*GA + U_DP*DP_TH
          U_RT =              DUO_RT*GA + U_DP*DP_RT
          U_MS =              DUO_MS*GA + U_DP*DP_MS
C
C
          DSN    = DSN    + (1.0 - U   )*DETA
          DSN_DO = DSN_DO -        U_DO *DETA
          DSN_UT = DSN_UT -        U_UT *DETA
          DSN_BB = DSN_BB -        U_BB *DETA
C
          DSN_TH = DSN_TH -        U_TH *DETA
          DSN_RT = DSN_RT -        U_RT *DETA
          DSN_MS = DSN_MS -        U_MS *DETA
C
C
          THN    = THN    + (U   -   U*U)     *DETA
          THN_DO = THN_DO + (1.0 - 2.0*U)*U_DO*DETA
          THN_UT = THN_UT + (1.0 - 2.0*U)*U_UT*DETA
          THN_BB = THN_BB + (1.0 - 2.0*U)*U_BB*DETA
C
          THN_TH = THN_TH + (1.0 - 2.0*U)*U_TH*DETA
          THN_RT = THN_RT + (1.0 - 2.0*U)*U_RT*DETA
          THN_MS = THN_MS + (1.0 - 2.0*U)*U_MS*DETA
C
c          TSN    = TSN    + (U   -   U*U*U)     *DETA
c          TSN_DO = TSN_DO + (1.0 - 3.0*U*U)*U_DO*DETA
c          TSN_UT = TSN_UT + (1.0 - 3.0*U*U)*U_UT*DETA
c          TSN_BB = TSN_BB + (1.0 - 3.0*U*U)*U_BB*DETA
C
c          TSN_TH = TSN_TH + (1.0 - 3.0*U*U)*U_TH*DETA
c          TSN_RT = TSN_RT + (1.0 - 3.0*U*U)*U_RT*DETA
c          TSN_MS = TSN_MS + (1.0 - 3.0*U*U)*U_MS*DETA
C
 100    CONTINUE
C
C------ set up 2x2 system for DO UT
        REZ1 = DO*DSN    - THETA*HK
        A11  = DO*DSN_DO + DSN
        A12  = DO*DSN_UT
cc        A12  = DO*DSN_BB
C
        REZ2 = DO*THN    - THETA
        A21  = DO*THN_DO + THN
        A22  = DO*THN_UT
cc        A22  = DO*THN_BB
C
cc      IF(ABS(REZ1/THETA) .LT. 2.0E-5 .AND.
cc   &     ABS(REZ2/THETA) .LT. 2.0E-5      ) GO TO 1010
        IF(ABS(REZ1/THETA) .LT. 1.0E-3 .AND.
     &     ABS(REZ2/THETA) .LT. 1.0E-3      ) GO TO 1010
C
        DET = A11*A22 - A12*A21
        B11 =  A22/DET
        B12 = -A12/DET
        B21 = -A21/DET
        B22 =  A11/DET
C
        DDO = -(B11*REZ1 + B12*REZ2)
        DUT = -(B21*REZ1 + B22*REZ2)
cc        DBB = -(B21*REZ1 + B22*REZ2)
C
        DMAX = MAX( ABS(DDO/DO) , ABS(DUT/0.05) )
cc        DMAX = MAX( ABS(DDO/DO) , ABS(DBB/BB  ) )
        RLX = 1.0
        IF(DMAX.GT.0.5) RLX = 0.5/DMAX
C
        DO = DO + RLX*DDO
        UT = UT + RLX*DUT
cc        BB = BB + RLX*DBB
c
cc        write(*,*) iter, do, ut, rez1, rez2
cc        write(*,*) iter, do, bb, rez1, rez2
C
 1000 CONTINUE
C
      WRITE(*,*) 'PRWALL: Convergence failed. Res =', REZ1, REZ2
C
 1010 CONTINUE
C
C
C
CCC   REZ1  = DO*DSN    - THETA*HK
      Z1_HK =           - THETA
      Z1_TH = DO*DSN_TH -       HK
      Z1_RT = DO*DSN_RT
      Z1_MS = DO*DSN_MS
C
CCC   REZ2  = DO*THN    - THETA
      Z2_HK = 0.0
      Z2_TH = DO*THN_TH - 1.0
      Z2_RT = DO*THN_RT
      Z2_MS = DO*THN_MS
C
      DO_HK = -(B11*Z1_HK + B12*Z2_HK)
      DO_TH = -(B11*Z1_TH + B12*Z2_TH)
      DO_RT = -(B11*Z1_RT + B12*Z2_RT)
      DO_MS = -(B11*Z1_MS + B12*Z2_MS)
C
      UT_HK = 0.0
      UT_TH = 0.0
      UT_RT = 0.0
      UT_MS = 0.0
C
      BB_HK = 0.0
      BB_TH = 0.0
      BB_RT = 0.0
      BB_MS = 0.0
C
      UT_HK = -(B21*Z1_HK + B22*Z2_HK)
      UT_TH = -(B21*Z1_TH + B22*Z2_TH)
      UT_RT = -(B21*Z1_RT + B22*Z2_RT)
      UT_MS = -(B21*Z1_MS + B22*Z2_MS)
C
cc      BB_HK = -(B21*Z1_HK + B22*Z2_HK)
cc      BB_TH = -(B21*Z1_TH + B22*Z2_TH)
cc      BB_RT = -(B21*Z1_RT + B22*Z2_RT)
cc      BB_MS = -(B21*Z1_MS + B22*Z2_MS)
C
C
C---- set and linearize Cf
      CF    = SGN*2.0*UT**2
      CF_UT = SGN*4.0*UT
      CF_DO = 0.0
C
      CF_HK = CF_UT*UT_HK + CF_DO*DO_HK
      CF_TH = CF_UT*UT_TH + CF_DO*DO_TH
      CF_RT = CF_UT*UT_RT + CF_DO*DO_RT
      CF_MS = CF_UT*UT_MS + CF_DO*DO_MS
C
C
C---- set and linearize "slip" velocity UI = UI( DUO(DO UT TH RT MS) )
      UI    = UO - DUO
      UI_UT =    - DUO_UT
      UI_DO =    - DUO_DO
C
      UI_HK = UI_UT*UT_HK + UI_DO*DO_HK
      UI_TH = UI_UT*UT_TH + UI_DO*DO_TH - DUO_TH
      UI_RT = UI_UT*UT_RT + UI_DO*DO_RT - DUO_RT
      UI_MS = UI_UT*UT_MS + UI_DO*DO_MS - DUO_MS
C
      RETURN
      END ! PRWALL



      SUBROUTINE UWALL(TH,UO,DO,UI,RT,CF,BB, Y,U,N)
C------------------------------------------
C     Returns wall BL profile U(Y).
C
C     Input:
C        TH    kinematic momentum thickness
C        UO    uo/ue outer velocity  (= 1 for normal BL)
C        DO    BL thickness
C        UI    inner "slip" velocity
C        RT    momentum thickness based on ue and THETA
C        CF    wall skin friction
C        BB    outer profile exponent
C        N     number of profile array points
C
C     Output:
C        Y(i)  normal coordinate array
C        U(i)  u/ue velocity profile array
C-------------------------------------------
C
      IMPLICIT REAL (A-H,M,O-Z)
      DIMENSION Y(N), U(N)
      DATA HPI / 1.570796327 /
      DATA AK / 0.09 /
C
C---- log-law constants
      DATA VKAP, VB / 0.40 , 5.0 /
C
      EBK = EXP(-VB*VKAP)
C
      SGN = SIGN( 1.0 , CF )
      UT = SGN * SQRT(0.5*ABS(CF))
C
C
C---- set d+ = DP(UT DO ; RT TH)
      DP    = SGN * UT*RT*DO/TH
C
C---- estimate inner profile edge velocity Ui+ using log-law
      UPE = LOG(DP)/VKAP + VB
C
C---- converge exact Ui+ using Spalding formula
      DO 10 ITUP=1, 5
        UK = UPE*VKAP
        ARG = UK - VB*VKAP
        EXU = EXP(ARG)
        REZ  = UPE +  EXU - EBK*(1.0 + UK + UK*UK/2.0 + UK*UK*UK/6.0)
     &       - DP
        DP_U = 1.0 + (EXU - EBK*(1.0 + UK + UK*UK/2.0))*VKAP
C
        IF(ABS(REZ/DP) .LT. 1.0E-5) GO TO 11
C
        DUPE = -REZ/DP_U
        UPE = UPE + DUPE
 10   CONTINUE
      WRITE(*,*) 'UWALL: Ue+ convergence failed,  Res =', REZ/DP
 11   CONTINUE
C
C          2      2        3      3
C---- set d y+/du+   and  d y+/du+   at BL edge
      DP_UU  = (EXU - EBK*(1.0 + UK))*VKAP**2
      DP_UUU = (EXU - EBK           )*VKAP**3
C
C                         2      2
C---- set  du+/dy+  and  d u+/dy+   at BL edge
      UPD  = 1.0/DP_U
      UPDD = (-1.0/DP_U**3) * DP_UU
C
C---- set coefficients for Spalding profile correction polynomial
      DC2  = 0.5*DP*DP*UPDD    - DP*UPD
      DC3  = -(  DP*DP*UPDD    - DP*UPD   ) / 3.0
C
C---- set outer profile amplitude DUO
      DUO    = UO - UT*(UPE + DC2 + DC3)
C
C
      BB1    =  3.0*(BB    +2.0)*(BB+3.0)/(BB+7.0)
      BB2    = -5.0*(BB    +1.0)*(BB+3.0)/(BB+7.0)
      BB3    =  2.0*(BB    +1.0)*(BB+2.0)/(BB+7.0)
C
c      NE = (N*9)/10
      NE = N
C
C---- fill Y coordinate and U profile arrays
CCC   EXUPE = EXP(UPE*VKAP - VB*VKAP)
      EXUPE = EXU
C
      DEXU = (EXUPE - EBK)/FLOAT(NE-1)
C
      I = 1
      Y(I) = 0.0
      U(I) = 0.0
      DO 20 I=2, NE
ccc     EXU = EBK +  DEXU*FLOAT(I-1)
        EXU = EBK + (DEXU - 0.75*DEXU*FLOAT(NE-I)/FLOAT(NE-1))
     &              *FLOAT(I-1)
C
CCC     UK = UP*VKAP
        UK = LOG(EXU) + VB*VKAP
C
        UP = UK/VKAP
C
C------ set "inverse" Spalding profile  y+(u+)
        YP    =  UP +  EXU - EBK*(1.0 + UK + UK*UK/2.0 + UK*UK*UK/6.0)
        YP_UP = 1.0 + (EXU - EBK*(1.0 + UK + UK*UK/2.0))*VKAP
C
        ET = YP/DP
C
C------ set final inner profile (fudged Spalding)
        UIP = UP + DC2*ET**2 + DC3*ET**3
C
C------ set outer profile
        SQE = SQRT(ET)
        ETB = ET**BB
C
ccc        G = 2.0*ETB - ETB**2
C
        G = (BB1   *ET + BB2   *ET**2 + BB3   *ET**3)*ETB
C
        Y(I) = ET*DO
        U(I) = UT*UIP  +  DUO*G
c
  20  CONTINUE
C
c      DETA = 0.1 / FLOAT(N - NE - 1)
c      DO 300 I=NE+1, N
c        ETA = 1.0 + DETA*FLOAT(I-NE)
c        Y(I) = DO*ETA
c        U(I) = 1.0
c 300  CONTINUE
C
      RETURN
      END ! UWALL



      SUBROUTINE FS(INORM,ISPEC,BSPEC,HSPEC,N,ETAE,GEO,ETA,F,U,S,DELTA)
      IMPLICIT REAL (A-H,M,O-Z)
      DIMENSION ETA(N), F(N), U(N), S(N)
C-----------------------------------------------------
C     Routine for solving the Falkner-Skan equation.
C
C     Input:
C     ------
C      INORM   1: eta = y / sqrt(vx/Ue)  "standard" Falkner-Skan coordinate
C              2: eta = y / sqrt(2vx/(m+1)Ue)  Hartree's coordinate
C              3: eta = y / Theta  momentum thickness normalized coordinate
C      ISPEC   1: BU  = x/Ue dUe/dx ( = "m")  specified
C              2: H12 = Dstar/Theta  specified
C      BSPEC   specified pressure gradient parameter  (if ISPEC = 1)
C      HSPEC   specified shape parameter of U profile (if ISPEC = 2)
C      N       total number of points in profiles
C      ETAE    edge value of normal coordinate
C      GEO     exponential stretching factor for ETA:
C
C     Output:
C     -------
C      BSPEC   calculated pressure gradient parameter  (if ISPEC = 2)
C      HSPEC   calculated shape parameter of U profile (if ISPEC = 1)
C      ETA     normal BL coordinate
C      F,U,S   Falkner Skan profiles
C      DELTA   normal coordinate scale  y = eta * Delta
C-----------------------------------------------------
C
      PARAMETER (NMAX=257,NRMAX=3)
      DIMENSION A(3,3,NMAX),B(3,3,NMAX),C(3,3,NMAX),
     &          R(3,NRMAX,NMAX)
C
C---- set number of righthand sides.
      DATA NRHS / 3 /
C
      ITMAX = 20
C
      IF(N.GT.NMAX) STOP 'FS: Array overflow.'
C
      PI = 4.0*ATAN(1.0)
C
CCC      if(u(n) .ne. 0.0) go to 9991

c
C---- initialize H or BetaU with empirical curve fits
      IF(ISPEC.EQ.1) THEN
       H = 2.6
       BU = BSPEC
      ELSE
       H = HSPEC
       IF(H .LE. 2.17) THEN
        WRITE(*,*) 'FS: Specified H too low'
        H = 2.17
       ENDIF
       BU = (0.058*(H-4.0)**2/(H-1.0) - 0.068) / (6.54*H - 14.07) * H**2
       IF(H .GT. 4.0) BU = MIN( BU , 0.0 )
      ENDIF
C
C---- initialize TN = Delta^2 Ue / vx
      IF(INORM.EQ.3) THEN
       TN = (6.54*H - 14.07) / H**2
      ELSE
       TN = 1.0
      ENDIF
C
C---- set eta array
      DETA = 1.0
      ETA(1) = 0.0
      DO 5 I=2, N
        ETA(I) = ETA(I-1) + DETA
        DETA = GEO*DETA
    5 CONTINUE
C
      DO 6 I=1, N
        ETA(I) = ETA(I) * ETAE/ETA(N)
    6 CONTINUE
C
C
C---- initial guess for profiles using a sine loop for U for half near wall
      IF(H .LE. 3.0) THEN
C
       IF(INORM.EQ.3) THEN
        ETJOIN = 7.3
       ELSE
        ETJOIN = 5.0
       ENDIF
C
       EFAC = 0.5*PI/ETJOIN
       DO 10 I=1, N
         U(I) = SIN(EFAC*ETA(I))
         F(I) = 1.0/EFAC * (1.0 - COS(EFAC*ETA(I)))
         S(I) = EFAC*COS(EFAC*ETA(I))
         IF(ETA(I) .GT. ETJOIN) GO TO 11
  10   CONTINUE
  11   CONTINUE
       IJOIN = I
C
C----- constant U for outer half
       DO 12 I=IJOIN+1, N
         U(I) = 1.0
         F(I) = F(IJOIN) + ETA(I) - ETA(IJOIN)
         S(I) = 0.
   12  CONTINUE
C
      ELSE
C
       IF(INORM.EQ.3) THEN
        ETJOIN1 = 0.0
        ETJOIN2 = 8.0
        IF(H .GT. 4.0) THEN
         ETJOIN1 = H - 4.0
         ETJOIN2 = ETJOIN1 + 8.0
        ENDIF
       ELSE
        ETJOIN1 = 0.0
        ETJOIN2 = 8.0
       ENDIF
C
       DO 13 I=1, N
         U(I) = 0.0
         S(I) = 0.0
         F(I) = 0.0
         IF(ETA(I) .GE. ETJOIN1) GO TO 14
 13    CONTINUE
 14    CONTINUE
       IJOIN = I
C
       EFAC = 0.5*PI/(ETJOIN2-ETJOIN1)
       DO 15 I=IJOIN+1, N
         EBAR = ETA(I) - ETJOIN1
         U(I) = 0.5 - 0.5*COS(2.0*EFAC*EBAR)
         F(I) = 0.5*EBAR - 0.25/EFAC * SIN(2.0*EFAC*EBAR)
         S(I) = EFAC*SIN(2.0*EFAC*EBAR)
         IF(ETA(I) .GE. ETJOIN2) GO TO 16
  15   CONTINUE
  16   CONTINUE
       IJOIN = I
C
C----- constant U for outer half
       DO 17 I=IJOIN+1, N
         U(I) = 1.0
         F(I) = F(IJOIN) + ETA(I) - ETA(IJOIN)
         S(I) = 0.
   17  CONTINUE
C
      ENDIF
c
 9991 continue
C
C
C---- Newton iteration loop
      DO 100 ITER=1, ITMAX
C
C------ zero out A,B,C blocks and righthand sides R
        DO 20 I=1, N
          DO 201 II=1,3
            DO 2001 III=1,3
              A(II,III,I) = 0.
              B(II,III,I) = 0.
              C(II,III,I) = 0.
 2001       CONTINUE
            R(II,1,I) = 0.
            R(II,2,I) = 0.
            R(II,3,I) = 0.
  201     CONTINUE
   20   CONTINUE
C
C...................................................
C
        A(1,1,1) = 1.0
        A(2,2,1) = 1.0
        A(3,2,N) = 1.0
        R(1,1,1) = F(1)
        R(2,1,1) = U(1)
        R(3,1,N) = U(N) - 1.0
C
        IF(INORM.EQ.2) THEN
         BETU    = 2.0*BU/(BU+1.0)
         BETU_BU = (2.0 - BETU/(BU+1.0))/(BU+1.0)
         BETN    = 1.0
         BETN_BU = 0.0
        ELSE
         BETU    = BU
         BETU_BU = 1.0
         BETN    = 0.5*(1.0 + BU)
         BETN_BU = 0.5
        ENDIF
C
        DO 30 I=1,N-1
C
          DETA = ETA(I+1) - ETA(I)
          R(1,1,I+1) = F(I+1) - F(I) - 0.5*DETA*(U(I+1)+U(I))
          R(2,1,I+1) = U(I+1) - U(I) - 0.5*DETA*(S(I+1)+S(I))
          R(3,1,I)   = S(I+1) - S(I)
     &      + TN * (  BETN*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
     &              + BETU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)) )
C
          A(3,1,I) =  TN * BETN*0.5*DETA*S(I)
          C(3,1,I) =  TN * BETN*0.5*DETA*S(I+1)
          A(3,2,I) = -TN * BETU    *DETA*U(I)
          C(3,2,I) = -TN * BETU    *DETA*U(I+1)
          A(3,3,I) =  TN * BETN*0.5*DETA*F(I)   - 1.0
          C(3,3,I) =  TN * BETN*0.5*DETA*F(I+1) + 1.0
C
          B(1,1,I+1) = -1.0
          A(1,1,I+1) =  1.0
          B(1,2,I+1) = -0.5*DETA
          A(1,2,I+1) = -0.5*DETA
C
          B(2,2,I+1) = -1.0
          A(2,2,I+1) =  1.0
          B(2,3,I+1) = -0.5*DETA
          A(2,3,I+1) = -0.5*DETA
C
          R(3,2,I) = TN 
     &          * ( BETN_BU*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
     &            + BETU_BU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)))
          R(3,3,I) = ( BETN*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
     &               + BETU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)) )
C
  30    CONTINUE
C...........................................................
C
C
C---- solve Newton system for the three solution vectors
      CALL B3SOLV(A,B,C,R,N,NRHS,NRMAX)
C
C
C---- calculate and linearize Dstar, Theta, in computational space
      DSI = 0.
      DSI1 = 0.
      DSI2 = 0.
      DSI3 = 0.
C
      THI = 0.
      THI1 = 0.
      THI2 = 0.
      THI3 = 0.
C
      DO 40 I=1,N-1
        US  = U(I) + U(I+1)
        DETA = ETA(I+1) - ETA(I)
C
        DSI = DSI + (1.0 - 0.5*US)*DETA
        DSI_US = -0.5*DETA
C
        THI = THI + (1.0 - 0.5*US)*0.5*US*DETA
        THI_US = (0.5 - 0.5*US)*DETA
C
        DSI1 = DSI1 + DSI_US*(R(2,1,I) + R(2,1,I+1))
        DSI2 = DSI2 + DSI_US*(R(2,2,I) + R(2,2,I+1))
        DSI3 = DSI3 + DSI_US*(R(2,3,I) + R(2,3,I+1))
C
        THI1 = THI1 + THI_US*(R(2,1,I) + R(2,1,I+1))
        THI2 = THI2 + THI_US*(R(2,2,I) + R(2,2,I+1))
        THI3 = THI3 + THI_US*(R(2,3,I) + R(2,3,I+1))
  40  CONTINUE
C
C
      IF(ISPEC.EQ.1) THEN
C
C----- set and linearize  Bu = Bspec  residual
       R1 = BSPEC - BU
       Q11 = 1.0
       Q12 = 0.0
C
      ELSE
C
C----- set and linearize  H = Hspec  residual
       R1  =  DSI  - HSPEC*THI
     &       -DSI1 + HSPEC*THI1
       Q11 = -DSI2 + HSPEC*THI2
       Q12 = -DSI3 + HSPEC*THI3
C
      ENDIF
C
C
      IF(INORM.EQ.3) THEN
C
C----- set and linearize  normalized Theta = 1  residual
       R2  =  THI  - 1.0
     &       -THI1
       Q21 = -THI2
       Q22 = -THI3
C
      ELSE
C
C----- set eta scaling coefficient to unity
       R2  =  1.0 - TN
       Q21 = 0.0
       Q22 = 1.0
C
      ENDIF
C
C
      DET =   Q11*Q22 - Q12*Q21
      DBU = -(R1 *Q22 - Q12*R2 ) / DET
      DTN = -(Q11*R2  - R1 *Q21) / DET
C
C
C---- calculate changes in F,U,S, and the max and rms change
      RMAX = 0.
      RMS = 0.
      DO 50 I=1,N
        DF = -R(1,1,I) - DBU*R(1,2,I) - DTN*R(1,3,I)
        DU = -R(2,1,I) - DBU*R(2,2,I) - DTN*R(2,3,I)
        DS = -R(3,1,I) - DBU*R(3,2,I) - DTN*R(3,3,I)
C
        RMAX = MAX(RMAX,ABS(DF),ABS(DU),ABS(DS))
        RMS = DF**2 + DU**2 + DS**2  +  RMS
   50 CONTINUE
      RMS = SQRT(RMS/(3.0*FLOAT(N) + 3.0))
C
      RMAX = MAX(RMAX,ABS(DBU/0.5),ABS(DTN/TN))
C
C---- set underrelaxation factor if necessary by limiting max change to 0.5
      RLX = 1.0
      IF(RMAX.GT.0.5) RLX = 0.5/RMAX
C
C---- update F,U,S
      DO 60 I=1,N
        DF = -R(1,1,I) - DBU*R(1,2,I) - DTN*R(1,3,I)
        DU = -R(2,1,I) - DBU*R(2,2,I) - DTN*R(2,3,I)
        DS = -R(3,1,I) - DBU*R(3,2,I) - DTN*R(3,3,I)
C
        F(I) = F(I) + RLX*DF
        U(I) = U(I) + RLX*DU
        S(I) = S(I) + RLX*DS
   60 CONTINUE
C
C---- update BetaU and Theta
      BU = BU + RLX*DBU
      TN = TN + RLX*DTN
C    
C---- check for convergence
      IF(ITER.GT.3 .AND. RMS.LT.1.E-5) GO TO 105
C
  100 CONTINUE
      WRITE(*,*) 'FS: Convergence failed'
C
  105 CONTINUE
C
      HSPEC = DSI/THI
      BSPEC = BU
C
      DELTA = SQRT(TN)
C
      RETURN
C
C     The
      END


      SUBROUTINE B3SOLV(A,B,C,R,N,NRHS,NRMAX)
      IMPLICIT REAL (A-H,M,O-Z)
      DIMENSION A(3,3,N), B(3,3,N), C(3,3,N), R(3,NRMAX,N)
C     **********************************************************************
C      This routine solves a 3x3 block-tridiagonal system with an arbitrary
C      number of righthand sides by a standard block elimination scheme.  
C      The solutions are returned in the Rj vectors.
C
C      |A C      ||d|   |R..|
C      |B A C    ||d|   |R..|
C      |  B . .  ||.| = |R..|
C      |    . . C||.|   |R..|
C      |      B A||d|   |R..|
C                                                  Mark Drela   10 March 86
C     **********************************************************************
C
CCC** Forward sweep: Elimination of lower block diagonal (B's).
      DO 1 I=1, N
C
        IM = I-1
C
C------ don't eliminate B1 block because it doesn't exist
        IF(I.EQ.1) GO TO 12
C
C------ eliminate Bi block, thus modifying Ai and Ci blocks
        DO 11 K=1, 3
          DO 111 L=1, 3
            A(K,L,I) = A(K,L,I)
     & - (B(K,1,I)*C(1,L,IM) + B(K,2,I)*C(2,L,IM) + B(K,3,I)*C(3,L,IM))
  111     CONTINUE
          DO 112 L=1, NRHS
            R(K,L,I) = R(K,L,I)
     & - (B(K,1,I)*R(1,L,IM) + B(K,2,I)*R(2,L,IM) + B(K,3,I)*R(3,L,IM))
  112     CONTINUE
   11   CONTINUE
C
C                                                              -1
CCC---- multiply Ci block and righthand side Ri vectors by (Ai)
C       using Gaussian elimination.
C
   12   DO 13 KPIV=1, 2
          KP1 = KPIV+1
C
C-------- find max pivot index KX
          KX = KPIV
          DO 131 K=KP1, 3
            IF(ABS(A(K,KPIV,I)) .LE. ABS(A(KX,KPIV,I))) THEN
             GO TO 131
            ELSE
             GO TO 1311
            ENDIF
 1311       KX = K
  131     CONTINUE
C
          IF(A(KX,KPIV,I).EQ.0.0) THEN
           WRITE(*,*) 'Singular A block, i = ',I
           STOP
          ENDIF
C
          PIVOT = 1.0/A(KX,KPIV,I)
C
C-------- switch pivots
          A(KX,KPIV,I) = A(KPIV,KPIV,I)
C
C-------- switch rows & normalize pivot row
          DO 132 L=KP1, 3
            TEMP = A(KX,L,I)*PIVOT
            A(KX,L,I) = A(KPIV,L,I)
            A(KPIV,L,I) = TEMP
  132     CONTINUE
C
          DO 133 L=1, 3
            TEMP = C(KX,L,I)*PIVOT
            C(KX,L,I) = C(KPIV,L,I)
            C(KPIV,L,I) = TEMP
  133     CONTINUE
C
          DO 134 L=1, NRHS
            TEMP = R(KX,L,I)*PIVOT
            R(KX,L,I) = R(KPIV,L,I)
            R(KPIV,L,I) = TEMP
  134     CONTINUE
CB
C-------- forward eliminate everything
          DO 135 K=KP1, 3
            DO 1351 L=KP1, 3
              A(K,L,I) = A(K,L,I) - A(K,KPIV,I)*A(KPIV,L,I)
 1351       CONTINUE
            C(K,1,I) = C(K,1,I) - A(K,KPIV,I)*C(KPIV,1,I)
            C(K,2,I) = C(K,2,I) - A(K,KPIV,I)*C(KPIV,2,I)
            C(K,3,I) = C(K,3,I) - A(K,KPIV,I)*C(KPIV,3,I)
            DO 1352 L=1, NRHS
              R(K,L,I) = R(K,L,I) - A(K,KPIV,I)*R(KPIV,L,I)
 1352       CONTINUE
  135     CONTINUE
C
   13   CONTINUE
C
C------ solve for last row
        IF(A(3,3,I).EQ.0.0) THEN
         WRITE(*,*) 'Singular A block, i = ',I
         STOP
        ENDIF
        PIVOT = 1.0/A(3,3,I)
        C(3,1,I) = C(3,1,I)*PIVOT
        C(3,2,I) = C(3,2,I)*PIVOT
        C(3,3,I) = C(3,3,I)*PIVOT
        DO 14 L=1, NRHS
          R(3,L,I) = R(3,L,I)*PIVOT
   14   CONTINUE
C
C------ back substitute everything
        DO 15 KPIV=2, 1, -1
          KP1 = KPIV+1
          DO 151 K=KP1, 3
            C(KPIV,1,I) = C(KPIV,1,I) - A(KPIV,K,I)*C(K,1,I)
            C(KPIV,2,I) = C(KPIV,2,I) - A(KPIV,K,I)*C(K,2,I)
            C(KPIV,3,I) = C(KPIV,3,I) - A(KPIV,K,I)*C(K,3,I)
            DO 1511 L=1, NRHS
              R(KPIV,L,I) = R(KPIV,L,I) - A(KPIV,K,I)*R(K,L,I)
 1511       CONTINUE
  151     CONTINUE
   15   CONTINUE
    1 CONTINUE
C
CCC** Backward sweep: Back substitution using upper block diagonal (Ci's).
      DO 2 I=N-1, 1, -1
        IP = I+1
        DO 21 L=1, NRHS
          DO 211 K=1, 3
            R(K,L,I) = R(K,L,I)
     & - (R(1,L,IP)*C(K,1,I) + R(2,L,IP)*C(K,2,I) + R(3,L,IP)*C(K,3,I))
  211     CONTINUE
   21   CONTINUE
    2 CONTINUE
C
      RETURN
      END ! B3SOLV