aboutsummaryrefslogtreecommitdiff
path: root/src/xblsys.f
blob: 9abe18f20907988d756f3cd1fb2034dddd865d31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
C***********************************************************************
C    Module:  xblsys.f
C 
C    Copyright (C) 2000 Mark Drela 
C 
C    This program is free software; you can redistribute it and/or modify
C    it under the terms of the GNU General Public License as published by
C    the Free Software Foundation; either version 2 of the License, or
C    (at your option) any later version.
C
C    This program is distributed in the hope that it will be useful,
C    but WITHOUT ANY WARRANTY; without even the implied warranty of
C    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C    GNU General Public License for more details.
C
C    You should have received a copy of the GNU General Public License
C    along with this program; if not, write to the Free Software
C    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***********************************************************************


      SUBROUTINE TRCHEK
C
C---- 1st-order amplification equation
cc      CALL TRCHEK1
C
C---- 2nd-order amplification equation
      CALL TRCHEK2
C
      RETURN
      END



      SUBROUTINE AXSET( HK1,    T1,    RT1,    A1,
     &                  HK2,    T2,    RT2,    A2,  ACRIT, IDAMPV,
     &           AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
     &               AX_HK2, AX_T2, AX_RT2, AX_A2 )
C----------------------------------------------------------
C     Returns average amplification AX over interval 1..2
C----------------------------------------------------------
C
cC==========================
cC---- 1st-order -- based on "1" quantities only
c      CALL DAMPL( HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1 )
c      AX2_HK2 = 0.0
c      AX2_T2  = 0.0
c      AX2_RT2 = 0.0
cC
c      AX1_A1 = 0.0
c      AX2_A2 = 0.0
cC
c      AX     = AX1
c      AX_AX1 = 1.0
c      AX_AX2 = 0.0
cC
c      ARG = MIN( 20.0*(ACRIT-A1) , 20.0 )
c      EXN    = EXP(-ARG)
c      EXN_A1 = 20.0*EXN
c      EXN_A2 = 0.
cC
c      DAX    = EXN   * 0.0004/T1
c      DAX_A1 = EXN_A1* 0.0004/T1
c      DAX_A2 = 0.
c      DAX_T1 = -DAX/T1
c      DAX_T2 = 0.
C
C==========================
C---- 2nd-order
      IF(IDAMPV.EQ.0) THEN
       CALL DAMPL( HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1 )
       CALL DAMPL( HK2, T2, RT2, AX2, AX2_HK2, AX2_T2, AX2_RT2 )
      ELSE
       CALL DAMPL2( HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1 )
       CALL DAMPL2( HK2, T2, RT2, AX2, AX2_HK2, AX2_T2, AX2_RT2 )
      ENDIF
C
CC---- simple-average version
C      AXA = 0.5*(AX1 + AX2)
C      IF(AXA .LE. 0.0) THEN
C       AXA = 0.0
C       AXA_AX1 = 0.0
C       AXA_AX2 = 0.0
C      ELSE
C       AXA_AX1 = 0.5
C       AXA_AX2 = 0.5
C      ENDIF
C
C---- rms-average version (seems a little better on coarse grids)
      AXSQ = 0.5*(AX1**2 + AX2**2)
      IF(AXSQ .LE. 0.0) THEN
       AXA = 0.0
       AXA_AX1 = 0.0
       AXA_AX2 = 0.0
      ELSE
       AXA = SQRT(AXSQ)
       AXA_AX1 = 0.5*AX1/AXA
       AXA_AX2 = 0.5*AX2/AXA
      ENDIF
C
C----- small additional term to ensure  dN/dx > 0  near  N = Ncrit
       ARG = MIN( 20.0*(ACRIT-0.5*(A1+A2)) , 20.0 )
       IF(ARG.LE.0.0) THEN
        EXN    = 1.0
CC      EXN_AC = 0.
        EXN_A1 = 0.
        EXN_A2 = 0.
       ELSE
        EXN    = EXP(-ARG)
CC      EXN_AC = -20.0    *EXN
        EXN_A1 =  20.0*0.5*EXN
        EXN_A2 =  20.0*0.5*EXN
       ENDIF
C
       DAX    = EXN    * 0.002/(T1+T2)
CC     DAX_AC = EXN_AC * 0.002/(T1+T2)
       DAX_A1 = EXN_A1 * 0.002/(T1+T2)
       DAX_A2 = EXN_A2 * 0.002/(T1+T2)
       DAX_T1 = -DAX/(T1+T2)
       DAX_T2 = -DAX/(T1+T2)
C
c
c        DAX    = 0.
c        DAX_A1 = 0.
c        DAX_A2 = 0.
c        DAX_AC = 0.
c        DAX_T1 = 0.
c        DAX_T2 = 0.
C==========================
C
      AX     = AXA             + DAX
C
      AX_HK1 = AXA_AX1*AX1_HK1
      AX_T1  = AXA_AX1*AX1_T1  + DAX_T1
      AX_RT1 = AXA_AX1*AX1_RT1
      AX_A1  =                   DAX_A1
C
      AX_HK2 = AXA_AX2*AX2_HK2
      AX_T2  = AXA_AX2*AX2_T2  + DAX_T2
      AX_RT2 = AXA_AX2*AX2_RT2
      AX_A2  =                   DAX_A2
C
      RETURN
      END


c      SUBROUTINE TRCHEK1
cC-------------------------------------------------
cC     Checks if transition occurs in the current
cC     interval 1..2  (IBL-1...IBL) on side IS.
cC
cC     Old first-order version. 
cC
cC     Growth rate is evaluated at the upstream 
cC     point "1". The discrete amplification 
cC     equation is
cC
cC       Ncrit - N(X1)     
cC       -------------  =  N'(X1)
cC          XT - X1        
cC
cC     which can be immediately solved for 
cC     the transition location XT.
cC-------------------------------------------------
c      INCLUDE 'XBL.INC'
cC
cC---- calculate AMPL2 value
c      CALL AXSET( HK1,    T1,    RT1, AMPL1,
c     &            HK2,    T2,    RT2, AMPL2,  AMCRIT, IDAMPV,
c     &     AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
c     &         AX_HK2, AX_T2, AX_RT2, AX_A2 )
c      AMPL2 = AMPL1 + AX*(X2-X1)
cC
cC---- test for free or forced transition
c      TRFREE = AMPL2.GE.AMCRIT
c      TRFORC = XIFORC.GT.X1 .AND. XIFORC.LE.X2
cC
cC---- set transition interval flag
c      TRAN = TRFORC .OR. TRFREE
cC
cC---- if no transition yet, just return
c      IF(.NOT.TRAN) RETURN
cC
cC---- resolve if both forced and free transition
c      IF(TRFREE .AND. TRFORC) THEN
c       XT = (AMCRIT-AMPL1)/AX  +  X1
c       TRFORC = XIFORC .LT. XT
c       TRFREE = XIFORC .GE. XT
c      ENDIF
cC
c      IF(TRFORC) THEN
cC----- if forced transition, then XT is prescribed
c       XT = XIFORC
c       XT_A1 = 0.
c       XT_X1 = 0.
c       XT_T1 = 0.
c       XT_D1 = 0.
c       XT_U1 = 0.
c       XT_X2 = 0.
c       XT_T2 = 0.
c       XT_D2 = 0.
c       XT_U2 = 0.
c       XT_MS = 0.
c       XT_RE = 0.
c       XT_XF = 1.0
c      ELSE
cC----- if free transition, XT is related to BL variables
cC-     by the amplification equation
cC
c       XT    =  (AMCRIT-AMPL1)/AX     + X1
c       XT_AX = -(AMCRIT-AMPL1)/AX**2
cC
c       XT_A1 = -1.0/AX - (AMCRIT-AMPL1)/AX**2 * AX_A1
c       XT_X1 = 1.0
c       XT_T1 = XT_AX*(AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1)
c       XT_D1 = XT_AX*(AX_HK1*HK1_D1                        )
c       XT_U1 = XT_AX*(AX_HK1*HK1_U1         + AX_RT1*RT1_U1)
c       XT_X2 = 0.
c       XT_T2 = 0.
c       XT_D2 = 0.
c       XT_U2 = 0.
c       XT_MS = XT_AX*(AX_HK1*HK1_MS         + AX_RT1*RT1_MS)
c       XT_RE = XT_AX*(                        AX_RT1*RT1_RE)
c       XT_XF = 0.0
c      ENDIF
cC
c      RETURN
c      END
 
 
      SUBROUTINE TRCHEK2
C----------------------------------------------------------------
C     New second-order version:  December 1994.
C
C     Checks if transition occurs in the current interval X1..X2.
C     If transition occurs, then set transition location XT, and 
C     its sensitivities to "1" and "2" variables.  If no transition, 
C     set amplification AMPL2.
C
C
C     Solves the implicit amplification equation for N2:
C
C       N2 - N1     N'(XT,NT) + N'(X1,N1)
C       -------  =  ---------------------
C       X2 - X1               2
C
C     In effect, a 2-point central difference is used between
C     X1..X2 (no transition), or X1..XT (transition).  The switch
C     is done by defining XT,NT in the equation above depending
C     on whether N2 exceeds Ncrit.
C
C  If N2<Ncrit:  NT=N2    , XT=X2                  (no transition)
C
C  If N2>Ncrit:  NT=Ncrit , XT=(Ncrit-N1)/(N2-N1)  (transition)
C
C
C----------------------------------------------------------------
      INCLUDE 'XBL.INC'
      DATA DAEPS / 5.0E-5 /
CCC   DATA DAEPS / 1.0D-12 /
C
C---- save variables and sensitivities at IBL ("2") for future restoration
      DO 5 ICOM=1, NCOM
        C2SAV(ICOM) = COM2(ICOM)
    5 CONTINUE
C
C---- calculate average amplification rate AX over X1..X2 interval
      CALL AXSET( HK1,    T1,    RT1, AMPL1,
     &            HK2,    T2,    RT2, AMPL2,  AMCRIT, IDAMPV,
     &     AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
     &         AX_HK2, AX_T2, AX_RT2, AX_A2 )
C
C---- set initial guess for iterate N2 (AMPL2) at X2
      AMPL2 = AMPL1 + AX*(X2-X1)
C
C---- solve implicit system for amplification AMPL2
      DO 100 ITAM=1, 30
C
C---- define weighting factors WF1,WF2 for defining "T" quantities from 1,2
C
      IF(AMPL2 .LE. AMCRIT) THEN
C------ there is no transition yet,  "T" is the same as "2"
        AMPLT    = AMPL2
        AMPLT_A2 = 1.0
        SFA    = 1.0
        SFA_A1 = 0.
        SFA_A2 = 0.
      ELSE
C------ there is transition in X1..X2, "T" is set from N1, N2
        AMPLT    = AMCRIT
        AMPLT_A2 = 0.
        SFA    = (AMPLT - AMPL1)/(AMPL2-AMPL1)
        SFA_A1 = ( SFA  - 1.0  )/(AMPL2-AMPL1)
        SFA_A2 = (      - SFA  )/(AMPL2-AMPL1)
      ENDIF
C
      IF(XIFORC.LT.X2) THEN
        SFX    = (XIFORC - X1 )/(X2-X1)
        SFX_X1 = (SFX    - 1.0)/(X2-X1)
        SFX_X2 = (       - SFX)/(X2-X1)
        SFX_XF =  1.0          /(X2-X1)
      ELSE
        SFX    = 1.0
        SFX_X1 = 0.
        SFX_X2 = 0.
        SFX_XF = 0.
      ENDIF
C
C---- set weighting factor from free or forced transition
      IF(SFA.LT.SFX) THEN
        WF2    = SFA
        WF2_A1 = SFA_A1
        WF2_A2 = SFA_A2
        WF2_X1 = 0.
        WF2_X2 = 0.
        WF2_XF = 0.
      ELSE
        WF2    = SFX
        WF2_A1 = 0.
        WF2_A2 = 0.
        WF2_X1 = SFX_X1
        WF2_X2 = SFX_X2
        WF2_XF = SFX_XF
      ENDIF
C
C
C=====================
CC---- 1st-order (based on "1" quantites only, for testing)
C      WF2    = 0.0
C      WF2_A1 = 0.0
C      WF2_A2 = 0.0
C      WF2_X1 = 0.0
C      WF2_X2 = 0.0
C      WF2_XF = 0.0
C=====================
C
      WF1    = 1.0 - WF2
      WF1_A1 =     - WF2_A1
      WF1_A2 =     - WF2_A2
      WF1_X1 =     - WF2_X1
      WF1_X2 =     - WF2_X2
      WF1_XF =     - WF2_XF
C
C---- interpolate BL variables to XT
      XT    = X1*WF1    + X2*WF2
      TT    = T1*WF1    + T2*WF2
      DT    = D1*WF1    + D2*WF2
      UT    = U1*WF1    + U2*WF2
C
      XT_A2 = X1*WF1_A2 + X2*WF2_A2
      TT_A2 = T1*WF1_A2 + T2*WF2_A2
      DT_A2 = D1*WF1_A2 + D2*WF2_A2
      UT_A2 = U1*WF1_A2 + U2*WF2_A2
C
C---- temporarily set "2" variables from "T" for BLKIN
      X2 = XT
      T2 = TT
      D2 = DT
      U2 = UT
C
C---- calculate laminar secondary "T" variables HKT, RTT
      CALL BLKIN
C
      HKT    = HK2
      HKT_TT = HK2_T2
      HKT_DT = HK2_D2
      HKT_UT = HK2_U2
      HKT_MS = HK2_MS
C
      RTT    = RT2
      RTT_TT = RT2_T2
      RTT_UT = RT2_U2
      RTT_MS = RT2_MS
      RTT_RE = RT2_RE
C
C---- restore clobbered "2" variables, except for AMPL2
      AMSAVE = AMPL2
      DO 8 ICOM=1, NCOM
        COM2(ICOM) = C2SAV(ICOM)
 8    CONTINUE
      AMPL2 = AMSAVE
C
C---- calculate amplification rate AX over current X1-XT interval
      CALL AXSET( HK1,    T1,    RT1, AMPL1,
     &            HKT,    TT,    RTT, AMPLT,  AMCRIT, IDAMPV,
     &     AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
     &         AX_HKT, AX_TT, AX_RTT, AX_AT )
C
C---- punch out early if there is no amplification here
      IF(AX .LE. 0.0) GO TO 101
C
C---- set sensitivity of AX(A2)
      AX_A2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A2
     &      + (AX_HKT*HKT_DT                        )*DT_A2
     &      + (AX_HKT*HKT_UT         + AX_RTT*RTT_UT)*UT_A2
     &      +  AX_AT                                 *AMPLT_A2
C
C---- residual for implicit AMPL2 definition (amplification equation)
      RES    = AMPL2 - AMPL1 - AX   *(X2-X1) 
      RES_A2 = 1.0           - AX_A2*(X2-X1)
C
      DA2 = -RES/RES_A2
C
      RLX = 1.0
      DXT = XT_A2*DA2
C
      IF(RLX*ABS(DXT/(X2-X1)) .GT. 0.05) RLX = 0.05*ABS((X2-X1)/DXT)
      IF(RLX*ABS(DA2)         .GT. 1.0 ) RLX = 1.0 *ABS(   1.0 /DA2)
C
C---- check if converged
      IF(ABS(DA2) .LT. DAEPS) GO TO 101
C
      IF((AMPL2.GT.AMCRIT .AND. AMPL2+RLX*DA2.LT.AMCRIT).OR.
     &   (AMPL2.LT.AMCRIT .AND. AMPL2+RLX*DA2.GT.AMCRIT)    ) THEN
C------ limited Newton step so AMPL2 doesn't step across AMCRIT either way
        AMPL2 = AMCRIT
      ELSE
C------ regular Newton step
        AMPL2 = AMPL2 + RLX*DA2
      ENDIF
C
 100  CONTINUE
      WRITE(*,*) 'TRCHEK2: N2 convergence failed.'
      WRITE(*,6700) X1, XT, X2, AMPL1, AMPLT, AMPL2, AX, DA2
 6700 FORMAT(1X,'x:', 3F9.5,'  N:',3F7.3,'  Nx:',F8.3,'   dN:',E10.3)
C
 101  CONTINUE
C
C
C---- test for free or forced transition
      TRFREE = AMPL2 .GE. AMCRIT
      TRFORC = XIFORC.GT.X1 .AND. XIFORC.LE.X2
C
C---- set transition interval flag
      TRAN = TRFORC .OR. TRFREE
C
      IF(.NOT.TRAN) RETURN
C
C---- resolve if both forced and free transition
      IF(TRFREE .AND. TRFORC) THEN
       TRFORC = XIFORC .LT. XT
       TRFREE = XIFORC .GE. XT
      ENDIF
C
      IF(TRFORC) THEN
C----- if forced transition, then XT is prescribed,
C-     no sense calculating the sensitivities, since we know them...
       XT = XIFORC
       XT_A1 = 0.
       XT_X1 = 0.
       XT_T1 = 0.
       XT_D1 = 0.
       XT_U1 = 0.
       XT_X2 = 0.
       XT_T2 = 0.
       XT_D2 = 0.
       XT_U2 = 0.
       XT_MS = 0.
       XT_RE = 0.
       XT_XF = 1.0
       RETURN
      ENDIF
C
C---- free transition ... set sensitivities of XT
C
C---- XT( X1 X2 A1 A2 XF ),  TT( T1 T2 A1 A2 X1 X2 XF),   DT( ...
CC    XT    = X1*WF1    + X2*WF2
CC    TT    = T1*WF1    + T2*WF2
CC    DT    = D1*WF1    + D2*WF2
CC    UT    = U1*WF1    + U2*WF2
C
      XT_X1 =    WF1
      TT_T1 =    WF1
      DT_D1 =    WF1
      UT_U1 =    WF1
C
      XT_X2 =                WF2
      TT_T2 =                WF2
      DT_D2 =                WF2
      UT_U2 =                WF2
C
      XT_A1 = X1*WF1_A1 + X2*WF2_A1
      TT_A1 = T1*WF1_A1 + T2*WF2_A1
      DT_A1 = D1*WF1_A1 + D2*WF2_A1
      UT_A1 = U1*WF1_A1 + U2*WF2_A1
C
CC    XT_A2 = X1*WF1_A2 + X2*WF2_A2
CC    TT_A2 = T1*WF1_A2 + T2*WF2_A2
CC    DT_A2 = D1*WF1_A2 + D2*WF2_A2
CC    UT_A2 = U1*WF1_A2 + U2*WF2_A2
C
      XT_X1 = X1*WF1_X1 + X2*WF2_X1 + XT_X1
      TT_X1 = T1*WF1_X1 + T2*WF2_X1
      DT_X1 = D1*WF1_X1 + D2*WF2_X1
      UT_X1 = U1*WF1_X1 + U2*WF2_X1
C
      XT_X2 = X1*WF1_X2 + X2*WF2_X2 + XT_X2
      TT_X2 = T1*WF1_X2 + T2*WF2_X2
      DT_X2 = D1*WF1_X2 + D2*WF2_X2
      UT_X2 = U1*WF1_X2 + U2*WF2_X2
C
      XT_XF = X1*WF1_XF + X2*WF2_XF
      TT_XF = T1*WF1_XF + T2*WF2_XF
      DT_XF = D1*WF1_XF + D2*WF2_XF
      UT_XF = U1*WF1_XF + U2*WF2_XF
C
C---- at this point, AX = AX( HK1, T1, RT1, A1, HKT, TT, RTT, AT )
C
C---- set sensitivities of AX( T1 D1 U1 A1 T2 D2 U2 A2 MS RE )
      AX_T1 =  AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1
     &      + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_T1
      AX_D1 =  AX_HK1*HK1_D1
     &      + (AX_HKT*HKT_DT                        )*DT_D1
      AX_U1 =  AX_HK1*HK1_U1         + AX_RT1*RT1_U1
     &      + (AX_HKT*HKT_UT         + AX_RTT*RTT_UT)*UT_U1
      AX_A1 =  AX_A1
     &      + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A1
     &      + (AX_HKT*HKT_DT                        )*DT_A1
     &      + (AX_HKT*HKT_UT         + AX_RTT*RTT_UT)*UT_A1
      AX_X1 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_X1
     &      + (AX_HKT*HKT_DT                        )*DT_X1
     &      + (AX_HKT*HKT_UT         + AX_RTT*RTT_UT)*UT_X1
C
      AX_T2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_T2
      AX_D2 = (AX_HKT*HKT_DT                        )*DT_D2
      AX_U2 = (AX_HKT*HKT_UT         + AX_RTT*RTT_UT)*UT_U2
      AX_A2 =  AX_AT                                 *AMPLT_A2
     &      + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A2
     &      + (AX_HKT*HKT_DT                        )*DT_A2
     &      + (AX_HKT*HKT_UT         + AX_RTT*RTT_UT)*UT_A2
      AX_X2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_X2
     &      + (AX_HKT*HKT_DT                        )*DT_X2
     &      + (AX_HKT*HKT_UT         + AX_RTT*RTT_UT)*UT_X2
C
      AX_XF = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_XF
     &      + (AX_HKT*HKT_DT                        )*DT_XF
     &      + (AX_HKT*HKT_UT         + AX_RTT*RTT_UT)*UT_XF
C
      AX_MS =  AX_HKT*HKT_MS         + AX_RTT*RTT_MS
     &      +  AX_HK1*HK1_MS         + AX_RT1*RT1_MS
      AX_RE =                          AX_RTT*RTT_RE
     &                               + AX_RT1*RT1_RE
C
C
C---- set sensitivities of residual RES
CCC   RES  = AMPL2 - AMPL1 - AX*(X2-X1)
      Z_AX =               -    (X2-X1)
C
      Z_A1 = Z_AX*AX_A1 - 1.0
      Z_T1 = Z_AX*AX_T1
      Z_D1 = Z_AX*AX_D1
      Z_U1 = Z_AX*AX_U1
      Z_X1 = Z_AX*AX_X1 + AX
C
      Z_A2 = Z_AX*AX_A2 + 1.0
      Z_T2 = Z_AX*AX_T2
      Z_D2 = Z_AX*AX_D2
      Z_U2 = Z_AX*AX_U2
      Z_X2 = Z_AX*AX_X2 - AX
C
      Z_XF = Z_AX*AX_XF
      Z_MS = Z_AX*AX_MS
      Z_RE = Z_AX*AX_RE
C
C---- set sensitivities of XT, with RES being stationary for A2 constraint
      XT_A1 = XT_A1 - (XT_A2/Z_A2)*Z_A1
      XT_T1 =       - (XT_A2/Z_A2)*Z_T1
      XT_D1 =       - (XT_A2/Z_A2)*Z_D1
      XT_U1 =       - (XT_A2/Z_A2)*Z_U1
      XT_X1 = XT_X1 - (XT_A2/Z_A2)*Z_X1
      XT_T2 =       - (XT_A2/Z_A2)*Z_T2
      XT_D2 =       - (XT_A2/Z_A2)*Z_D2
      XT_U2 =       - (XT_A2/Z_A2)*Z_U2
      XT_X2 = XT_X2 - (XT_A2/Z_A2)*Z_X2
      XT_MS =       - (XT_A2/Z_A2)*Z_MS
      XT_RE =       - (XT_A2/Z_A2)*Z_RE
      XT_XF = 0.0
C
      RETURN
      END


      SUBROUTINE BLSYS
C------------------------------------------------------------------
C
C     Sets up the BL Newton system governing the current interval:
C
C     |       ||dA1|     |       ||dA2|       |     |
C     |  VS1  ||dT1|  +  |  VS2  ||dT2|   =   |VSREZ|
C     |       ||dD1|     |       ||dD2|       |     |
C              |dU1|              |dU2|
C              |dX1|              |dX2|
C
C        3x5    5x1         3x5    5x1          3x1
C
C     The system as shown corresponds to a laminar station
C     If TRAN, then  dS2  replaces  dA2
C     If TURB, then  dS1, dS2  replace  dA1, dA2
C
C------------------------------------------------------------------
      IMPLICIT REAL(M)
      INCLUDE 'XBL.INC'
C
C---- calculate secondary BL variables and their sensitivities
      IF(WAKE) THEN
       CALL BLVAR(3)
       CALL BLMID(3)
      ELSE IF(TURB.OR.TRAN) THEN
       CALL BLVAR(2)
       CALL BLMID(2)
      ELSE
       CALL BLVAR(1)
       CALL BLMID(1)
      ENDIF
C
C---- for the similarity station, "1" and "2" variables are the same
      IF(SIMI) THEN
       DO 3 ICOM=1, NCOM
         COM1(ICOM) = COM2(ICOM)
    3  CONTINUE
      ENDIF
C
C---- set up appropriate finite difference system for current interval
      IF(TRAN) THEN
       CALL TRDIF
      ELSE IF(SIMI) THEN
       CALL BLDIF(0)
      ELSE IF(.NOT.TURB) THEN
       CALL BLDIF(1)
      ELSE IF(WAKE) THEN
       CALL BLDIF(3)
      ELSE IF(TURB) THEN
       CALL BLDIF(2)
      ENDIF
C
      IF(SIMI) THEN
C----- at similarity station, "1" variables are really "2" variables
       DO 10 K=1, 4
         DO 101 L=1, 5
           VS2(K,L) = VS1(K,L) + VS2(K,L)
           VS1(K,L) = 0.
  101    CONTINUE
   10  CONTINUE
      ENDIF
C
C---- change system over into incompressible Uei and Mach
      DO 20 K=1, 4
C
C------ residual derivatives wrt compressible Uec
        RES_U1 = VS1(K,4)
        RES_U2 = VS2(K,4)
        RES_MS = VSM(K)
C
C------ combine with derivatives of compressible  U1,U2 = Uec(Uei M)
        VS1(K,4) = RES_U1*U1_UEI
        VS2(K,4) =                RES_U2*U2_UEI
        VSM(K)   = RES_U1*U1_MS + RES_U2*U2_MS  + RES_MS
   20 CONTINUE
C
      RETURN
      END
 

      SUBROUTINE TESYS(CTE,TTE,DTE)
C--------------------------------------------------------
C     Sets up "dummy" BL system between airfoil TE point 
C     and first wake point infinitesimally behind TE.
C--------------------------------------------------------
      IMPLICIT REAL (M)
      INCLUDE 'XBL.INC'
C
      DO 55 K=1, 4
        VSREZ(K) = 0.
        VSM(K)   = 0.
        VSR(K)   = 0.
        VSX(K)   = 0.
        DO 551 L=1, 5
          VS1(K,L) = 0.
          VS2(K,L) = 0.
  551   CONTINUE
   55 CONTINUE
C
      CALL BLVAR(3)
C
      VS1(1,1) = -1.0
      VS2(1,1) = 1.0
      VSREZ(1) = CTE - S2      
C
      VS1(2,2) = -1.0
      VS2(2,2) = 1.0
      VSREZ(2) = TTE - T2
C
      VS1(3,3) = -1.0
      VS2(3,3) = 1.0
      VSREZ(3) = DTE - D2 - DW2
C
      RETURN
      END


      SUBROUTINE BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
C----------------------------------------------------------
C     Set BL primary "2" variables from parameter list
C----------------------------------------------------------
      IMPLICIT REAL(M)
      INCLUDE 'XBL.INC'
C
      X2 = XSI
      AMPL2 = AMI
      S2  = CTI
      T2  = THI
      D2  = DSI - DSWAKI
      DW2 = DSWAKI
C
      U2 = UEI*(1.0-TKBL) / (1.0 - TKBL*(UEI/QINFBL)**2)
      U2_UEI = (1.0 + TKBL*(2.0*U2*UEI/QINFBL**2 - 1.0))
     &       / (1.0 - TKBL*(UEI/QINFBL)**2)
      U2_MS  = (U2*(UEI/QINFBL)**2  -  UEI)*TKBL_MS
     &                    / (1.0 - TKBL*(UEI/QINFBL)**2)
C
      RETURN
      END ! BLPRV

 
      SUBROUTINE BLKIN
C----------------------------------------------------------
C     Calculates turbulence-independent secondary "2" 
C     variables from the primary "2" variables.
C----------------------------------------------------------
      IMPLICIT REAL(M)
      INCLUDE 'XBL.INC'
C
C---- set edge Mach number ** 2
      M2    = U2*U2*HSTINV / (GM1BL*(1.0 - 0.5*U2*U2*HSTINV))
      TR2   = 1.0 + 0.5*GM1BL*M2
      M2_U2 = 2.0*M2*TR2/U2
      M2_MS = U2*U2*TR2    / (GM1BL*(1.0 - 0.5*U2*U2*HSTINV))
     &      * HSTINV_MS
C
C---- set edge static density (isentropic relation)
      R2    = RSTBL   *TR2**(-1.0/GM1BL)
      R2_U2 = -R2/TR2 * 0.5*M2_U2
      R2_MS = -R2/TR2 * 0.5*M2_MS
     &      + RSTBL_MS*TR2**(-1.0/GM1BL)
C
C---- set shape parameter
      H2    =  D2/T2
      H2_D2 = 1.0/T2
      H2_T2 = -H2/T2
C
C---- set edge static/stagnation enthalpy
      HERAT = 1.0 - 0.5*U2*U2*HSTINV
      HE_U2 =     -        U2*HSTINV
      HE_MS =     - 0.5*U2*U2*HSTINV_MS
C
C---- set molecular viscosity
      V2 = SQRT((HERAT)**3) * (1.0+HVRAT)/(HERAT+HVRAT)/REYBL
      V2_HE = V2*(1.5/HERAT - 1.0/(HERAT+HVRAT))
C
      V2_U2 =                        V2_HE*HE_U2
      V2_MS = -V2/REYBL * REYBL_MS + V2_HE*HE_MS
      V2_RE = -V2/REYBL * REYBL_RE
C
C---- set kinematic shape parameter
      CALL HKIN( H2, M2, HK2, HK2_H2, HK2_M2 )
C
      HK2_U2 =                HK2_M2*M2_U2
      HK2_T2 = HK2_H2*H2_T2
      HK2_D2 = HK2_H2*H2_D2
      HK2_MS =                HK2_M2*M2_MS
C
C---- set momentum thickness Reynolds number
      RT2    = R2*U2*T2/V2
      RT2_U2 = RT2*(1.0/U2 + R2_U2/R2 - V2_U2/V2)
      RT2_T2 = RT2/T2
      RT2_MS = RT2*(         R2_MS/R2 - V2_MS/V2)
      RT2_RE = RT2*(                  - V2_RE/V2)
C
      RETURN
      END ! BLKIN


 
      SUBROUTINE BLVAR(ITYP)
C----------------------------------------------------
C     Calculates all secondary "2" variables from
C     the primary "2" variables X2, U2, T2, D2, S2.
C     Also calculates the sensitivities of the
C     secondary variables wrt the primary variables.
C
C      ITYP = 1 :  laminar
C      ITYP = 2 :  turbulent
C      ITYP = 3 :  turbulent wake
C----------------------------------------------------
      IMPLICIT REAL(M)
      INCLUDE 'XBL.INC'
C
      IF(ITYP.EQ.3) HK2 = MAX(HK2,1.00005)
      IF(ITYP.NE.3) HK2 = MAX(HK2,1.05000)
C
C---- density thickness shape parameter     ( H** )
      CALL HCT( HK2, M2, HC2, HC2_HK2, HC2_M2 )
      HC2_U2 = HC2_HK2*HK2_U2 + HC2_M2*M2_U2
      HC2_T2 = HC2_HK2*HK2_T2
      HC2_D2 = HC2_HK2*HK2_D2
      HC2_MS = HC2_HK2*HK2_MS + HC2_M2*M2_MS
C
C---- set KE thickness shape parameter from  H - H*  correlations
      IF(ITYP.EQ.1) THEN
       CALL HSL( HK2, RT2, M2, HS2, HS2_HK2, HS2_RT2, HS2_M2 )
      ELSE
       CALL HST( HK2, RT2, M2, HS2, HS2_HK2, HS2_RT2, HS2_M2 )
      ENDIF
C
      HS2_U2 = HS2_HK2*HK2_U2 + HS2_RT2*RT2_U2 + HS2_M2*M2_U2
      HS2_T2 = HS2_HK2*HK2_T2 + HS2_RT2*RT2_T2
      HS2_D2 = HS2_HK2*HK2_D2
      HS2_MS = HS2_HK2*HK2_MS + HS2_RT2*RT2_MS + HS2_M2*M2_MS
      HS2_RE =                  HS2_RT2*RT2_RE
C
C---- normalized slip velocity  Us
      US2     = 0.5*HS2*( 1.0 - (HK2-1.0)/(GBCON*H2) )
      US2_HS2 = 0.5  *  ( 1.0 - (HK2-1.0)/(GBCON*H2) )
      US2_HK2 = 0.5*HS2*(     -  1.0     /(GBCON*H2) )
      US2_H2  = 0.5*HS2*        (HK2-1.0)/(GBCON*H2**2)
C
      US2_U2 = US2_HS2*HS2_U2 + US2_HK2*HK2_U2
      US2_T2 = US2_HS2*HS2_T2 + US2_HK2*HK2_T2 + US2_H2*H2_T2
      US2_D2 = US2_HS2*HS2_D2 + US2_HK2*HK2_D2 + US2_H2*H2_D2
      US2_MS = US2_HS2*HS2_MS + US2_HK2*HK2_MS
      US2_RE = US2_HS2*HS2_RE
C
      IF(ITYP.LE.2 .AND. US2.GT.0.95) THEN
CCC       WRITE(*,*) 'BLVAR: Us clamped:', US2
       US2 = 0.98
       US2_U2 = 0.
       US2_T2 = 0.
       US2_D2 = 0.
       US2_MS = 0.
       US2_RE = 0.
      ENDIF
C
      IF(ITYP.EQ.3 .AND. US2.GT.0.99995) THEN
CCC       WRITE(*,*) 'BLVAR: Wake Us clamped:', US2
       US2 = 0.99995
       US2_U2 = 0.
       US2_T2 = 0.
       US2_D2 = 0.
       US2_MS = 0.
       US2_RE = 0.
      ENDIF
C
C---- equilibrium wake layer shear coefficient (Ctau)EQ ** 1/2
C   ...  NEW  12 Oct 94
      GCC = 0.0
      HKC = HK2 - 1.0
      HKC_HK2 = 1.0
      HKC_RT2 = 0.0
      IF(ITYP.EQ.2) THEN
       GCC = GCCON
       HKC     = HK2 - 1.0 - GCC/RT2
       HKC_HK2 = 1.0
       HKC_RT2 =             GCC/RT2**2
       IF(HKC .LT. 0.01) THEN
        HKC = 0.01
        HKC_HK2 = 0.0
        HKC_RT2 = 0.0
       ENDIF
      ENDIF
C
      HKB = HK2 - 1.0
      USB = 1.0 - US2
      CQ2     =
     &    SQRT( CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2) )
      CQ2_HS2 = CTCON    *HKB*HKC**2 / (USB*H2*HK2**2)       * 0.5/CQ2
      CQ2_US2 = CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2) / USB * 0.5/CQ2
      CQ2_HK2 = CTCON*HS2    *HKC**2 / (USB*H2*HK2**2)       * 0.5/CQ2
     &        - CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**3) * 2.0 * 0.5/CQ2
     &        + CTCON*HS2*HKB*HKC    / (USB*H2*HK2**2) * 2.0 * 0.5/CQ2
     &         *HKC_HK2
      CQ2_RT2 = CTCON*HS2*HKB*HKC    / (USB*H2*HK2**2) * 2.0 * 0.5/CQ2
     &         *HKC_RT2
      CQ2_H2  =-CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2) / H2  * 0.5/CQ2
C
      CQ2_U2 = CQ2_HS2*HS2_U2 + CQ2_US2*US2_U2 + CQ2_HK2*HK2_U2
      CQ2_T2 = CQ2_HS2*HS2_T2 + CQ2_US2*US2_T2 + CQ2_HK2*HK2_T2
      CQ2_D2 = CQ2_HS2*HS2_D2 + CQ2_US2*US2_D2 + CQ2_HK2*HK2_D2
      CQ2_MS = CQ2_HS2*HS2_MS + CQ2_US2*US2_MS + CQ2_HK2*HK2_MS
      CQ2_RE = CQ2_HS2*HS2_RE + CQ2_US2*US2_RE
C
      CQ2_U2 = CQ2_U2                + CQ2_RT2*RT2_U2
      CQ2_T2 = CQ2_T2 + CQ2_H2*H2_T2 + CQ2_RT2*RT2_T2
      CQ2_D2 = CQ2_D2 + CQ2_H2*H2_D2
      CQ2_MS = CQ2_MS                + CQ2_RT2*RT2_MS
      CQ2_RE = CQ2_RE                + CQ2_RT2*RT2_RE
C
C
C---- set skin friction coefficient 
      IF(ITYP.EQ.3) THEN
C----- wake
       CF2     = 0.
       CF2_HK2 = 0.
       CF2_RT2 = 0.
       CF2_M2  = 0.
      ELSE IF(ITYP.EQ.1) THEN
C----- laminar
       CALL CFL( HK2, RT2, M2, CF2, CF2_HK2, CF2_RT2, CF2_M2 )
      ELSE
C----- turbulent
       CALL CFT( HK2, RT2, M2, CF2, CF2_HK2, CF2_RT2, CF2_M2 )
       CALL CFL( HK2, RT2, M2, CF2L,CF2L_HK2,CF2L_RT2,CF2L_M2)
       IF(CF2L.GT.CF2) THEN
C------- laminar Cf is greater than turbulent Cf -- use laminar
C-       (this will only occur for unreasonably small Rtheta)
ccc      write(*,*) 'Cft Cfl Rt Hk:', CF2, CF2L, RT2, HK2, X2
         CF2     = CF2L
         CF2_HK2 = CF2L_HK2
         CF2_RT2 = CF2L_RT2
         CF2_M2  = CF2L_M2
       ENDIF
      ENDIF
C
      CF2_U2 = CF2_HK2*HK2_U2 + CF2_RT2*RT2_U2 + CF2_M2*M2_U2
      CF2_T2 = CF2_HK2*HK2_T2 + CF2_RT2*RT2_T2
      CF2_D2 = CF2_HK2*HK2_D2
      CF2_MS = CF2_HK2*HK2_MS + CF2_RT2*RT2_MS + CF2_M2*M2_MS
      CF2_RE =                  CF2_RT2*RT2_RE
C
C---- dissipation function    2 CD / H*
      IF(ITYP.EQ.1) THEN
C
C----- laminar
       CALL DIL( HK2, RT2, DI2, DI2_HK2, DI2_RT2 )
C
       DI2_U2 = DI2_HK2*HK2_U2 + DI2_RT2*RT2_U2
       DI2_T2 = DI2_HK2*HK2_T2 + DI2_RT2*RT2_T2
       DI2_D2 = DI2_HK2*HK2_D2
       DI2_S2 = 0.
       DI2_MS = DI2_HK2*HK2_MS + DI2_RT2*RT2_MS
       DI2_RE =                  DI2_RT2*RT2_RE
C
      ELSE IF(ITYP.EQ.2) THEN
C
CCC       CALL DIT(     HS2,     US2,     CF2,     S2, DI2,
CCC     &           DI2_HS2, DI2_US2, DI2_CF2, DI2_S2      )
C
C----- turbulent wall contribution
       CALL CFT(HK2, RT2, M2, CF2T, CF2T_HK2, CF2T_RT2, CF2T_M2)
       CF2T_U2 = CF2T_HK2*HK2_U2 + CF2T_RT2*RT2_U2 + CF2T_M2*M2_U2
       CF2T_T2 = CF2T_HK2*HK2_T2 + CF2T_RT2*RT2_T2
       CF2T_D2 = CF2T_HK2*HK2_D2
       CF2T_MS = CF2T_HK2*HK2_MS + CF2T_RT2*RT2_MS + CF2T_M2*M2_MS
       CF2T_RE =                   CF2T_RT2*RT2_RE
C
       DI2      =  ( 0.5*CF2T*US2 ) * 2.0/HS2
       DI2_HS2  = -( 0.5*CF2T*US2 ) * 2.0/HS2**2
       DI2_US2  =  ( 0.5*CF2T     ) * 2.0/HS2
       DI2_CF2T =  ( 0.5     *US2 ) * 2.0/HS2
C
       DI2_S2 = 0.0
       DI2_U2 = DI2_HS2*HS2_U2 + DI2_US2*US2_U2 + DI2_CF2T*CF2T_U2
       DI2_T2 = DI2_HS2*HS2_T2 + DI2_US2*US2_T2 + DI2_CF2T*CF2T_T2
       DI2_D2 = DI2_HS2*HS2_D2 + DI2_US2*US2_D2 + DI2_CF2T*CF2T_D2
       DI2_MS = DI2_HS2*HS2_MS + DI2_US2*US2_MS + DI2_CF2T*CF2T_MS
       DI2_RE = DI2_HS2*HS2_RE + DI2_US2*US2_RE + DI2_CF2T*CF2T_RE
C
C
C----- set minimum Hk for wake layer to still exist
       GRT = LOG(RT2)
       HMIN = 1.0 + 2.1/GRT
       HM_RT2 = -(2.1/GRT**2) / RT2
C
C----- set factor DFAC for correcting wall dissipation for very low Hk
       FL = (HK2-1.0)/(HMIN-1.0)
       FL_HK2 =   1.0/(HMIN-1.0)
       FL_RT2 = ( -FL/(HMIN-1.0) ) * HM_RT2
C
       TFL = TANH(FL)
       DFAC  = 0.5 + 0.5* TFL
       DF_FL =       0.5*(1.0 - TFL**2)
C
       DF_HK2 = DF_FL*FL_HK2
       DF_RT2 = DF_FL*FL_RT2
C
       DI2_S2 = DI2_S2*DFAC
       DI2_U2 = DI2_U2*DFAC + DI2*(DF_HK2*HK2_U2 + DF_RT2*RT2_U2)
       DI2_T2 = DI2_T2*DFAC + DI2*(DF_HK2*HK2_T2 + DF_RT2*RT2_T2)
       DI2_D2 = DI2_D2*DFAC + DI2*(DF_HK2*HK2_D2                )
       DI2_MS = DI2_MS*DFAC + DI2*(DF_HK2*HK2_MS + DF_RT2*RT2_MS)
       DI2_RE = DI2_RE*DFAC + DI2*(                DF_RT2*RT2_RE)
       DI2    = DI2   *DFAC
C
      ELSE
C
C----- zero wall contribution for wake
       DI2    = 0.0
       DI2_S2 = 0.0
       DI2_U2 = 0.0
       DI2_T2 = 0.0
       DI2_D2 = 0.0
       DI2_MS = 0.0
       DI2_RE = 0.0
C
      ENDIF
C
C
C---- Add on turbulent outer layer contribution
      IF(ITYP.NE.1) THEN
C
       DD     =  S2**2 * (0.995-US2) * 2.0/HS2
       DD_HS2 = -S2**2 * (0.995-US2) * 2.0/HS2**2
       DD_US2 = -S2**2               * 2.0/HS2
       DD_S2  =  S2*2.0* (0.995-US2) * 2.0/HS2
C
       DI2    = DI2    + DD
       DI2_S2 =          DD_S2
       DI2_U2 = DI2_U2 + DD_HS2*HS2_U2 + DD_US2*US2_U2
       DI2_T2 = DI2_T2 + DD_HS2*HS2_T2 + DD_US2*US2_T2
       DI2_D2 = DI2_D2 + DD_HS2*HS2_D2 + DD_US2*US2_D2
       DI2_MS = DI2_MS + DD_HS2*HS2_MS + DD_US2*US2_MS
       DI2_RE = DI2_RE + DD_HS2*HS2_RE + DD_US2*US2_RE
C
C----- add laminar stress contribution to outer layer CD
c###
       DD     =  0.15*(0.995-US2)**2 / RT2  * 2.0/HS2
       DD_US2 = -0.15*(0.995-US2)*2. / RT2  * 2.0/HS2
       DD_HS2 = -DD/HS2
       DD_RT2 = -DD/RT2
C
       DI2    = DI2    + DD
       DI2_U2 = DI2_U2 + DD_HS2*HS2_U2 + DD_US2*US2_U2 + DD_RT2*RT2_U2
       DI2_T2 = DI2_T2 + DD_HS2*HS2_T2 + DD_US2*US2_T2 + DD_RT2*RT2_T2
       DI2_D2 = DI2_D2 + DD_HS2*HS2_D2 + DD_US2*US2_D2
       DI2_MS = DI2_MS + DD_HS2*HS2_MS + DD_US2*US2_MS + DD_RT2*RT2_MS
       DI2_RE = DI2_RE + DD_HS2*HS2_RE + DD_US2*US2_RE + DD_RT2*RT2_RE
C
      ENDIF
C
C
      IF(ITYP.EQ.2) THEN
        CALL DIL( HK2, RT2, DI2L, DI2L_HK2, DI2L_RT2 )
C
        IF(DI2L.GT.DI2) THEN
C------- laminar CD is greater than turbulent CD -- use laminar
C-       (this will only occur for unreasonably small Rtheta)
ccc       write(*,*) 'CDt CDl Rt Hk:', DI2, DI2L, RT2, HK2
          DI2    = DI2L
          DI2_S2 = 0.
          DI2_U2 = DI2L_HK2*HK2_U2 + DI2L_RT2*RT2_U2
          DI2_T2 = DI2L_HK2*HK2_T2 + DI2L_RT2*RT2_T2
          DI2_D2 = DI2L_HK2*HK2_D2
          DI2_MS = DI2L_HK2*HK2_MS + DI2L_RT2*RT2_MS
          DI2_RE =                   DI2L_RT2*RT2_RE
        ENDIF
      ENDIF
C
cC----- add on CD contribution of inner shear layer
c       IF(ITYP.EQ.3 .AND. DW2.GT.0.0) THEN
c        DKON = 0.03*0.75**3
c        DDI = DKON*US2**3
c        DDI_US2 = 3.0*DKON*US2**2
c        DI2 = DI2 + DDI * DW2/DWTE
c        DI2_U2 = DI2_U2 + DDI_US2*US2_U2 * DW2/DWTE
c        DI2_T2 = DI2_T2 + DDI_US2*US2_T2 * DW2/DWTE
c        DI2_D2 = DI2_D2 + DDI_US2*US2_D2 * DW2/DWTE
c        DI2_MS = DI2_MS + DDI_US2*US2_MS * DW2/DWTE
c        DI2_RE = DI2_RE + DDI_US2*US2_RE * DW2/DWTE
c       ENDIF
C
      IF(ITYP.EQ.3) THEN
C------ laminar wake CD
        CALL DILW( HK2, RT2, DI2L, DI2L_HK2, DI2L_RT2 )
        IF(DI2L .GT. DI2) THEN
C------- laminar wake CD is greater than turbulent CD -- use laminar
C-       (this will only occur for unreasonably small Rtheta)
ccc         write(*,*) 'CDt CDl Rt Hk:', DI2, DI2L, RT2, HK2
         DI2    = DI2L
         DI2_S2 = 0.
         DI2_U2 = DI2L_HK2*HK2_U2 + DI2L_RT2*RT2_U2
         DI2_T2 = DI2L_HK2*HK2_T2 + DI2L_RT2*RT2_T2
         DI2_D2 = DI2L_HK2*HK2_D2
         DI2_MS = DI2L_HK2*HK2_MS + DI2L_RT2*RT2_MS
         DI2_RE =                   DI2L_RT2*RT2_RE
        ENDIF
      ENDIF
C
C
      IF(ITYP.EQ.3) THEN
C----- double dissipation for the wake (two wake halves)
       DI2    = DI2   *2.0
       DI2_S2 = DI2_S2*2.0
       DI2_U2 = DI2_U2*2.0
       DI2_T2 = DI2_T2*2.0
       DI2_D2 = DI2_D2*2.0
       DI2_MS = DI2_MS*2.0
       DI2_RE = DI2_RE*2.0
      ENDIF
C
C---- BL thickness (Delta) from simplified Green's correlation
      DE2     = (3.15 + 1.72/(HK2-1.0)   )*T2  +  D2
      DE2_HK2 = (     - 1.72/(HK2-1.0)**2)*T2
C
      DE2_U2 = DE2_HK2*HK2_U2
      DE2_T2 = DE2_HK2*HK2_T2 + (3.15 + 1.72/(HK2-1.0))
      DE2_D2 = DE2_HK2*HK2_D2 + 1.0
      DE2_MS = DE2_HK2*HK2_MS
C
ccc      HDMAX = 15.0
      HDMAX = 12.0
      IF(DE2 .GT. HDMAX*T2) THEN
cccc      IF(DE2 .GT. HDMAX*T2 .AND. (HK2 .GT. 4.0 .OR. ITYP.EQ.3)) THEN
       DE2    = HDMAX*T2
       DE2_U2 =  0.0
       DE2_T2 = HDMAX
       DE2_D2 =  0.0
       DE2_MS =  0.0
      ENDIF
C
      RETURN
      END
 

      SUBROUTINE BLMID(ITYP)
C----------------------------------------------------
C     Calculates midpoint skin friction CFM
C
C      ITYP = 1 :  laminar
C      ITYP = 2 :  turbulent
C      ITYP = 3 :  turbulent wake
C----------------------------------------------------
      IMPLICIT REAL(M)
      INCLUDE 'XBL.INC'
C
C---- set similarity variables if not defined
      IF(SIMI) THEN
       HK1    = HK2
       HK1_T1 = HK2_T2
       HK1_D1 = HK2_D2
       HK1_U1 = HK2_U2
       HK1_MS = HK2_MS
       RT1    = RT2
       RT1_T1 = RT2_T2
       RT1_U1 = RT2_U2
       RT1_MS = RT2_MS
       RT1_RE = RT2_RE
       M1    = M2
       M1_U1 = M2_U2
       M1_MS = M2_MS
      ENDIF
C
C---- define stuff for midpoint CF
      HKA = 0.5*(HK1 + HK2)
      RTA = 0.5*(RT1 + RT2)
      MA  = 0.5*(M1  + M2 )
C
C---- midpoint skin friction coefficient  (zero in wake)
      IF(ITYP.EQ.3) THEN
       CFM     = 0.
       CFM_HKA = 0.
       CFM_RTA = 0.
       CFM_MA  = 0.
       CFM_MS  = 0.
      ELSE IF(ITYP.EQ.1) THEN
       CALL CFL( HKA, RTA, MA, CFM, CFM_HKA, CFM_RTA, CFM_MA )
      ELSE
       CALL CFT( HKA, RTA, MA, CFM, CFM_HKA, CFM_RTA, CFM_MA )
       CALL CFL( HKA, RTA, MA, CFML,CFML_HKA,CFML_RTA,CFML_MA)
       IF(CFML.GT.CFM) THEN
ccc      write(*,*) 'Cft Cfl Rt Hk:', CFM, CFML, RTA, HKA, 0.5*(X1+X2)
         CFM     = CFML
         CFM_HKA = CFML_HKA
         CFM_RTA = CFML_RTA
         CFM_MA  = CFML_MA
       ENDIF
      ENDIF
C
      CFM_U1 = 0.5*(CFM_HKA*HK1_U1 + CFM_MA*M1_U1 + CFM_RTA*RT1_U1)
      CFM_T1 = 0.5*(CFM_HKA*HK1_T1 +                CFM_RTA*RT1_T1)
      CFM_D1 = 0.5*(CFM_HKA*HK1_D1                                )
C
      CFM_U2 = 0.5*(CFM_HKA*HK2_U2 + CFM_MA*M2_U2 + CFM_RTA*RT2_U2)
      CFM_T2 = 0.5*(CFM_HKA*HK2_T2 +                CFM_RTA*RT2_T2)
      CFM_D2 = 0.5*(CFM_HKA*HK2_D2                                )
C
      CFM_MS = 0.5*(CFM_HKA*HK1_MS + CFM_MA*M1_MS + CFM_RTA*RT1_MS
     &            + CFM_HKA*HK2_MS + CFM_MA*M2_MS + CFM_RTA*RT2_MS)
      CFM_RE = 0.5*(                                CFM_RTA*RT1_RE
     &                                            + CFM_RTA*RT2_RE)
C
      RETURN
      END ! BLMID

 
      SUBROUTINE TRDIF
C-----------------------------------------------
C     Sets up the Newton system governing the
C     transition interval.  Equations governing
C     the  laminar  part  X1 < xi < XT  and
C     the turbulent part  XT < xi < X2
C     are simply summed.
C-----------------------------------------------
      IMPLICIT REAL(M)
      INCLUDE 'XBL.INC'
      REAL  BL1(4,5), BL2(4,5), BLREZ(4), BLM(4), BLR(4), BLX(4)
     &    , BT1(4,5), BT2(4,5), BTREZ(4), BTM(4), BTR(4), BTX(4)
C
C---- save variables and sensitivities for future restoration
      DO 5 ICOM=1, NCOM
        C1SAV(ICOM) = COM1(ICOM)
        C2SAV(ICOM) = COM2(ICOM)
    5 CONTINUE
C
C---- weighting factors for linear interpolation to transition point
      WF2    = (XT-X1)/(X2-X1)
      WF2_XT = 1.0/(X2-X1)
C
      WF2_A1 = WF2_XT*XT_A1
      WF2_X1 = WF2_XT*XT_X1 + (WF2-1.0)/(X2-X1)
      WF2_X2 = WF2_XT*XT_X2 -  WF2     /(X2-X1)
      WF2_T1 = WF2_XT*XT_T1
      WF2_T2 = WF2_XT*XT_T2
      WF2_D1 = WF2_XT*XT_D1
      WF2_D2 = WF2_XT*XT_D2
      WF2_U1 = WF2_XT*XT_U1
      WF2_U2 = WF2_XT*XT_U2
      WF2_MS = WF2_XT*XT_MS
      WF2_RE = WF2_XT*XT_RE
      WF2_XF = WF2_XT*XT_XF
C
      WF1    = 1.0 - WF2
      WF1_A1 = -WF2_A1
      WF1_X1 = -WF2_X1
      WF1_X2 = -WF2_X2
      WF1_T1 = -WF2_T1
      WF1_T2 = -WF2_T2
      WF1_D1 = -WF2_D1
      WF1_D2 = -WF2_D2
      WF1_U1 = -WF2_U1
      WF1_U2 = -WF2_U2
      WF1_MS = -WF2_MS
      WF1_RE = -WF2_RE
      WF1_XF = -WF2_XF
C
C
C**** FIRST,  do laminar part between X1 and XT
C
C-----interpolate primary variables to transition point
      TT    = T1*WF1    + T2*WF2
      TT_A1 = T1*WF1_A1 + T2*WF2_A1
      TT_X1 = T1*WF1_X1 + T2*WF2_X1
      TT_X2 = T1*WF1_X2 + T2*WF2_X2
      TT_T1 = T1*WF1_T1 + T2*WF2_T1 + WF1
      TT_T2 = T1*WF1_T2 + T2*WF2_T2 + WF2
      TT_D1 = T1*WF1_D1 + T2*WF2_D1
      TT_D2 = T1*WF1_D2 + T2*WF2_D2
      TT_U1 = T1*WF1_U1 + T2*WF2_U1
      TT_U2 = T1*WF1_U2 + T2*WF2_U2
      TT_MS = T1*WF1_MS + T2*WF2_MS
      TT_RE = T1*WF1_RE + T2*WF2_RE
      TT_XF = T1*WF1_XF + T2*WF2_XF
C
      DT    = D1*WF1    + D2*WF2
      DT_A1 = D1*WF1_A1 + D2*WF2_A1
      DT_X1 = D1*WF1_X1 + D2*WF2_X1
      DT_X2 = D1*WF1_X2 + D2*WF2_X2
      DT_T1 = D1*WF1_T1 + D2*WF2_T1
      DT_T2 = D1*WF1_T2 + D2*WF2_T2
      DT_D1 = D1*WF1_D1 + D2*WF2_D1 + WF1
      DT_D2 = D1*WF1_D2 + D2*WF2_D2 + WF2
      DT_U1 = D1*WF1_U1 + D2*WF2_U1
      DT_U2 = D1*WF1_U2 + D2*WF2_U2
      DT_MS = D1*WF1_MS + D2*WF2_MS
      DT_RE = D1*WF1_RE + D2*WF2_RE
      DT_XF = D1*WF1_XF + D2*WF2_XF
C
      UT    = U1*WF1    + U2*WF2
      UT_A1 = U1*WF1_A1 + U2*WF2_A1
      UT_X1 = U1*WF1_X1 + U2*WF2_X1
      UT_X2 = U1*WF1_X2 + U2*WF2_X2
      UT_T1 = U1*WF1_T1 + U2*WF2_T1
      UT_T2 = U1*WF1_T2 + U2*WF2_T2
      UT_D1 = U1*WF1_D1 + U2*WF2_D1
      UT_D2 = U1*WF1_D2 + U2*WF2_D2
      UT_U1 = U1*WF1_U1 + U2*WF2_U1 + WF1
      UT_U2 = U1*WF1_U2 + U2*WF2_U2 + WF2
      UT_MS = U1*WF1_MS + U2*WF2_MS
      UT_RE = U1*WF1_RE + U2*WF2_RE
      UT_XF = U1*WF1_XF + U2*WF2_XF
C
C---- set primary "T" variables at XT  (really placed into "2" variables)
      X2 = XT
      T2 = TT
      D2 = DT
      U2 = UT
C
      AMPL2 = AMCRIT
      S2 = 0.
C
C---- calculate laminar secondary "T" variables
      CALL BLKIN
      CALL BLVAR(1)
C
C---- calculate X1-XT midpoint CFM value
      CALL BLMID(1)
C=
C=    at this point, all "2" variables are really "T" variables at XT
C=
C
C---- set up Newton system for dAm, dTh, dDs, dUe, dXi  at  X1 and XT
      CALL BLDIF(1)
C
C---- The current Newton system is in terms of "1" and "T" variables,
C-    so calculate its equivalent in terms of "1" and "2" variables.
C-    In other words, convert residual sensitivities wrt "T" variables
C-    into sensitivities wrt "1" and "2" variables.  The amplification
C-    equation is unnecessary here, so the K=1 row is left empty.
      DO 10 K=2, 3
        BLREZ(K) = VSREZ(K)
        BLM(K)   = VSM(K)
     &           + VS2(K,2)*TT_MS
     &           + VS2(K,3)*DT_MS
     &           + VS2(K,4)*UT_MS
     &           + VS2(K,5)*XT_MS
        BLR(K)   = VSR(K)
     &           + VS2(K,2)*TT_RE
     &           + VS2(K,3)*DT_RE
     &           + VS2(K,4)*UT_RE
     &           + VS2(K,5)*XT_RE
        BLX(K)   = VSX(K)
     &           + VS2(K,2)*TT_XF
     &           + VS2(K,3)*DT_XF
     &           + VS2(K,4)*UT_XF
     &           + VS2(K,5)*XT_XF
C
        BL1(K,1) = VS1(K,1)
     &           + VS2(K,2)*TT_A1
     &           + VS2(K,3)*DT_A1
     &           + VS2(K,4)*UT_A1
     &           + VS2(K,5)*XT_A1
        BL1(K,2) = VS1(K,2)
     &           + VS2(K,2)*TT_T1
     &           + VS2(K,3)*DT_T1
     &           + VS2(K,4)*UT_T1
     &           + VS2(K,5)*XT_T1
        BL1(K,3) = VS1(K,3)
     &           + VS2(K,2)*TT_D1
     &           + VS2(K,3)*DT_D1
     &           + VS2(K,4)*UT_D1
     &           + VS2(K,5)*XT_D1
        BL1(K,4) = VS1(K,4)
     &           + VS2(K,2)*TT_U1
     &           + VS2(K,3)*DT_U1
     &           + VS2(K,4)*UT_U1
     &           + VS2(K,5)*XT_U1
        BL1(K,5) = VS1(K,5)
     &           + VS2(K,2)*TT_X1
     &           + VS2(K,3)*DT_X1
     &           + VS2(K,4)*UT_X1
     &           + VS2(K,5)*XT_X1
C
        BL2(K,1) = 0.
        BL2(K,2) = VS2(K,2)*TT_T2
     &           + VS2(K,3)*DT_T2
     &           + VS2(K,4)*UT_T2
     &           + VS2(K,5)*XT_T2
        BL2(K,3) = VS2(K,2)*TT_D2
     &           + VS2(K,3)*DT_D2
     &           + VS2(K,4)*UT_D2
     &           + VS2(K,5)*XT_D2
        BL2(K,4) = VS2(K,2)*TT_U2
     &           + VS2(K,3)*DT_U2
     &           + VS2(K,4)*UT_U2
     &           + VS2(K,5)*XT_U2
        BL2(K,5) = VS2(K,2)*TT_X2
     &           + VS2(K,3)*DT_X2
     &           + VS2(K,4)*UT_X2
     &           + VS2(K,5)*XT_X2
C
   10 CONTINUE
C
C
C**** SECOND, set up turbulent part between XT and X2  ****
C
C---- calculate equilibrium shear coefficient CQT at transition point
      CALL BLVAR(2)
C
C---- set initial shear coefficient value ST at transition point
C-    ( note that CQ2, CQ2_T2, etc. are really "CQT", "CQT_TT", etc.)
C
      CTR     = CTRCON*EXP(-CTRCEX/(HK2-1.0))
      CTR_HK2 = CTR * CTRCEX/(HK2-1.0)**2
C
c      CTR     = 1.1*EXP(-10.0/HK2**2)
c      CTR_HK2 = CTR * 10.0 * 2.0/HK2**3
C
CCC      CTR = 1.2
CCC      CTR = 0.7
CCC      CTR_HK2 = 0.0
C
      ST    = CTR*CQ2
      ST_TT = CTR*CQ2_T2 + CQ2*CTR_HK2*HK2_T2
      ST_DT = CTR*CQ2_D2 + CQ2*CTR_HK2*HK2_D2
      ST_UT = CTR*CQ2_U2 + CQ2*CTR_HK2*HK2_U2
      ST_MS = CTR*CQ2_MS + CQ2*CTR_HK2*HK2_MS
      ST_RE = CTR*CQ2_RE
C
C---- calculate ST sensitivities wrt the actual "1" and "2" variables
      ST_A1 = ST_TT*TT_A1 + ST_DT*DT_A1 + ST_UT*UT_A1
      ST_X1 = ST_TT*TT_X1 + ST_DT*DT_X1 + ST_UT*UT_X1
      ST_X2 = ST_TT*TT_X2 + ST_DT*DT_X2 + ST_UT*UT_X2
      ST_T1 = ST_TT*TT_T1 + ST_DT*DT_T1 + ST_UT*UT_T1
      ST_T2 = ST_TT*TT_T2 + ST_DT*DT_T2 + ST_UT*UT_T2
      ST_D1 = ST_TT*TT_D1 + ST_DT*DT_D1 + ST_UT*UT_D1
      ST_D2 = ST_TT*TT_D2 + ST_DT*DT_D2 + ST_UT*UT_D2
      ST_U1 = ST_TT*TT_U1 + ST_DT*DT_U1 + ST_UT*UT_U1
      ST_U2 = ST_TT*TT_U2 + ST_DT*DT_U2 + ST_UT*UT_U2
      ST_MS = ST_TT*TT_MS + ST_DT*DT_MS + ST_UT*UT_MS + ST_MS
      ST_RE = ST_TT*TT_RE + ST_DT*DT_RE + ST_UT*UT_RE + ST_RE
      ST_XF = ST_TT*TT_XF + ST_DT*DT_XF + ST_UT*UT_XF
C
      AMPL2 = 0.
      S2 = ST
C
C---- recalculate turbulent secondary "T" variables using proper CTI
      CALL BLVAR(2)
C
C---- set "1" variables to "T" variables and reset "2" variables
C-    to their saved turbulent values
      DO 30 ICOM=1, NCOM
        COM1(ICOM) = COM2(ICOM)
        COM2(ICOM) = C2SAV(ICOM)
   30 CONTINUE
C
C---- calculate XT-X2 midpoint CFM value
      CALL BLMID(2)
C
C---- set up Newton system for dCt, dTh, dDs, dUe, dXi  at  XT and X2
      CALL BLDIF(2)
C
C---- convert sensitivities wrt "T" variables into sensitivities
C-    wrt "1" and "2" variables as done before for the laminar part
      DO 40 K=1, 3
        BTREZ(K) = VSREZ(K)
        BTM(K)   = VSM(K) 
     &           + VS1(K,1)*ST_MS
     &           + VS1(K,2)*TT_MS
     &           + VS1(K,3)*DT_MS
     &           + VS1(K,4)*UT_MS
     &           + VS1(K,5)*XT_MS
        BTR(K)   = VSR(K) 
     &           + VS1(K,1)*ST_RE
     &           + VS1(K,2)*TT_RE
     &           + VS1(K,3)*DT_RE
     &           + VS1(K,4)*UT_RE
     &           + VS1(K,5)*XT_RE
        BTX(K)   = VSX(K)
     &           + VS1(K,1)*ST_XF
     &           + VS1(K,2)*TT_XF
     &           + VS1(K,3)*DT_XF
     &           + VS1(K,4)*UT_XF
     &           + VS1(K,5)*XT_XF
C
        BT1(K,1) = VS1(K,1)*ST_A1
     &           + VS1(K,2)*TT_A1
     &           + VS1(K,3)*DT_A1
     &           + VS1(K,4)*UT_A1
     &           + VS1(K,5)*XT_A1
        BT1(K,2) = VS1(K,1)*ST_T1
     &           + VS1(K,2)*TT_T1
     &           + VS1(K,3)*DT_T1
     &           + VS1(K,4)*UT_T1
     &           + VS1(K,5)*XT_T1
        BT1(K,3) = VS1(K,1)*ST_D1
     &           + VS1(K,2)*TT_D1
     &           + VS1(K,3)*DT_D1
     &           + VS1(K,4)*UT_D1
     &           + VS1(K,5)*XT_D1
        BT1(K,4) = VS1(K,1)*ST_U1
     &           + VS1(K,2)*TT_U1
     &           + VS1(K,3)*DT_U1
     &           + VS1(K,4)*UT_U1
     &           + VS1(K,5)*XT_U1
        BT1(K,5) = VS1(K,1)*ST_X1
     &           + VS1(K,2)*TT_X1
     &           + VS1(K,3)*DT_X1
     &           + VS1(K,4)*UT_X1
     &           + VS1(K,5)*XT_X1
C
        BT2(K,1) = VS2(K,1)
        BT2(K,2) = VS2(K,2)
     &           + VS1(K,1)*ST_T2
     &           + VS1(K,2)*TT_T2
     &           + VS1(K,3)*DT_T2
     &           + VS1(K,4)*UT_T2
     &           + VS1(K,5)*XT_T2
        BT2(K,3) = VS2(K,3)
     &           + VS1(K,1)*ST_D2
     &           + VS1(K,2)*TT_D2
     &           + VS1(K,3)*DT_D2
     &           + VS1(K,4)*UT_D2
     &           + VS1(K,5)*XT_D2
        BT2(K,4) = VS2(K,4)
     &           + VS1(K,1)*ST_U2
     &           + VS1(K,2)*TT_U2
     &           + VS1(K,3)*DT_U2
     &           + VS1(K,4)*UT_U2
     &           + VS1(K,5)*XT_U2
        BT2(K,5) = VS2(K,5)
     &           + VS1(K,1)*ST_X2
     &           + VS1(K,2)*TT_X2
     &           + VS1(K,3)*DT_X2
     &           + VS1(K,4)*UT_X2
     &           + VS1(K,5)*XT_X2
C
   40 CONTINUE
C
C---- Add up laminar and turbulent parts to get final system
C-    in terms of honest-to-God "1" and "2" variables.
      VSREZ(1) =            BTREZ(1)
      VSREZ(2) = BLREZ(2) + BTREZ(2)
      VSREZ(3) = BLREZ(3) + BTREZ(3)
      VSM(1)   =            BTM(1)
      VSM(2)   = BLM(2)   + BTM(2)
      VSM(3)   = BLM(3)   + BTM(3)
      VSR(1)   =            BTR(1)
      VSR(2)   = BLR(2)   + BTR(2)
      VSR(3)   = BLR(3)   + BTR(3)
      VSX(1)   =            BTX(1)
      VSX(2)   = BLX(2)   + BTX(2)
      VSX(3)   = BLX(3)   + BTX(3)
      DO 60 L=1, 5
        VS1(1,L) =            BT1(1,L)
        VS2(1,L) =            BT2(1,L)
        VS1(2,L) = BL1(2,L) + BT1(2,L)
        VS2(2,L) = BL2(2,L) + BT2(2,L)
        VS1(3,L) = BL1(3,L) + BT1(3,L)
        VS2(3,L) = BL2(3,L) + BT2(3,L)
   60 CONTINUE
C
C---- To be sanitary, restore "1" quantities which got clobbered
C-    in all of the numerical gymnastics above.  The "2" variables
C-    were already restored for the XT-X2 differencing part.
      DO 70 ICOM=1, NCOM
        COM1(ICOM) = C1SAV(ICOM)
   70 CONTINUE
C
      RETURN
      END
 
 
      SUBROUTINE BLDIF(ITYP)
C-----------------------------------------------------------
C     Sets up the Newton system coefficients and residuals
C
C        ITYP = 0 :  similarity station
C        ITYP = 1 :  laminar interval
C        ITYP = 2 :  turbulent interval
C        ITYP = 3 :  wake interval
C
C     This routine knows nothing about a transition interval,
C     which is taken care of by TRDIF.
C-----------------------------------------------------------
      IMPLICIT REAL(M)
      INCLUDE 'XBL.INC'
C
      IF(ITYP.EQ.0) THEN
C----- similarity logarithmic differences  (prescribed)
       XLOG = 1.0
       ULOG = BULE
       TLOG = 0.5*(1.0 - BULE)
       HLOG = 0.
       DDLOG = 0.
      ELSE
C----- usual logarithmic differences
       XLOG = LOG(X2/X1)
       ULOG = LOG(U2/U1)
       TLOG = LOG(T2/T1)
       HLOG = LOG(HS2/HS1)
C       XLOG = 2.0*(X2-X1)/(X2+X1)
C       ULOG = 2.0*(U2-U1)/(U2+U1)
C       TLOG = 2.0*(T2-T1)/(T2+T1)
C       HLOG = 2.0*(HS2-HS1)/(HS2+HS1)
       DDLOG = 1.0
      ENDIF
C
      DO 55 K=1, 4
        VSREZ(K) = 0.
        VSM(K) = 0.
        VSR(K) = 0.
        VSX(K) = 0.
        DO 551 L=1, 5
          VS1(K,L) = 0.
          VS2(K,L) = 0.
  551   CONTINUE
   55 CONTINUE
C
C---- set triggering constant for local upwinding
      HUPWT = 1.0
C
ccc      HDCON = 5.0*HUPWT
ccc      HD_HK1 = 0.0
ccc      HD_HK2 = 0.0
C
      HDCON  =  5.0*HUPWT/HK2**2
      HD_HK1 =  0.0
      HD_HK2 = -HDCON*2.0/HK2
C
C---- use less upwinding in the wake
      IF(ITYP.EQ.3) THEN
       HDCON  =  HUPWT/HK2**2
       HD_HK1 =  0.0
       HD_HK2 = -HDCON*2.0/HK2
      ENDIF
C
C---- local upwinding is based on local change in  log(Hk-1)
C-    (mainly kicks in at transition)
      ARG = ABS((HK2-1.0)/(HK1-1.0))
      HL = LOG(ARG)
      HL_HK1 = -1.0/(HK1-1.0)
      HL_HK2 =  1.0/(HK2-1.0)
C
C---- set local upwinding parameter UPW and linearize it
C
C       UPW = 0.5   Trapezoidal
C       UPW = 1.0   Backward Euler
C
      HLSQ = MIN( HL**2 , 15.0 )
      EHH = EXP(-HLSQ*HDCON)
      UPW = 1.0 - 0.5*EHH
      UPW_HL =        EHH * HL  *HDCON
      UPW_HD =    0.5*EHH * HLSQ
C
      UPW_HK1 = UPW_HL*HL_HK1 + UPW_HD*HD_HK1
      UPW_HK2 = UPW_HL*HL_HK2 + UPW_HD*HD_HK2
C
      UPW_U1 = UPW_HK1*HK1_U1
      UPW_T1 = UPW_HK1*HK1_T1
      UPW_D1 = UPW_HK1*HK1_D1
      UPW_U2 = UPW_HK2*HK2_U2
      UPW_T2 = UPW_HK2*HK2_T2
      UPW_D2 = UPW_HK2*HK2_D2
      UPW_MS = UPW_HK1*HK1_MS
     &       + UPW_HK2*HK2_MS
C
C
      IF(ITYP.EQ.0) THEN
C
C***** LE point -->  set zero amplification factor
       VS2(1,1) = 1.0
       VSR(1)   = 0.
       VSREZ(1) = -AMPL2
C
      ELSE IF(ITYP.EQ.1) THEN
C
C***** laminar part -->  set amplification equation
C
C----- set average amplification AX over interval X1..X2
       CALL AXSET( HK1,    T1,    RT1, AMPL1,  
     &             HK2,    T2,    RT2, AMPL2, AMCRIT, IDAMPV,
     &      AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
     &          AX_HK2, AX_T2, AX_RT2, AX_A2 )
C
       REZC = AMPL2 - AMPL1 - AX*(X2-X1)
       Z_AX = -(X2-X1)
C
       VS1(1,1) = Z_AX* AX_A1  -  1.0
       VS1(1,2) = Z_AX*(AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1)
       VS1(1,3) = Z_AX*(AX_HK1*HK1_D1                        )
       VS1(1,4) = Z_AX*(AX_HK1*HK1_U1         + AX_RT1*RT1_U1)
       VS1(1,5) =  AX
       VS2(1,1) = Z_AX* AX_A2  +  1.0
       VS2(1,2) = Z_AX*(AX_HK2*HK2_T2 + AX_T2 + AX_RT2*RT2_T2)
       VS2(1,3) = Z_AX*(AX_HK2*HK2_D2                        )         
       VS2(1,4) = Z_AX*(AX_HK2*HK2_U2         + AX_RT2*RT2_U2)
       VS2(1,5) = -AX
       VSM(1)   = Z_AX*(AX_HK1*HK1_MS         + AX_RT1*RT1_MS
     &                + AX_HK2*HK2_MS         + AX_RT2*RT2_MS)
       VSR(1)   = Z_AX*(                        AX_RT1*RT1_RE
     &                                        + AX_RT2*RT2_RE)
       VSX(1)   = 0.
       VSREZ(1) = -REZC
C
      ELSE
C
C***** turbulent part -->  set shear lag equation
C
       SA  = (1.0-UPW)*S1  + UPW*S2
       CQA = (1.0-UPW)*CQ1 + UPW*CQ2
       CFA = (1.0-UPW)*CF1 + UPW*CF2
       HKA = (1.0-UPW)*HK1 + UPW*HK2
C
       USA = 0.5*(US1 + US2)
       RTA = 0.5*(RT1 + RT2)
       DEA = 0.5*(DE1 + DE2)
       DA  = 0.5*(D1  + D2 )
C
C
       IF(ITYP.EQ.3) THEN
C------ increased dissipation length in wake (decrease its reciprocal)
        ALD = DLCON
       ELSE
        ALD = 1.0
       ENDIF
C
C----- set and linearize  equilibrium 1/Ue dUe/dx   ...  NEW  12 Oct 94
       IF(ITYP.EQ.2) THEN
        GCC = GCCON
        HKC     = HKA - 1.0 - GCC/RTA
        HKC_HKA = 1.0
        HKC_RTA =             GCC/RTA**2
        IF(HKC .LT. 0.01) THEN
         HKC = 0.01
         HKC_HKA = 0.0
         HKC_RTA = 0.0
        ENDIF
       ELSE
        GCC = 0.0
        HKC = HKA - 1.0
        HKC_HKA = 1.0
        HKC_RTA = 0.0
       ENDIF
C
       HR     = HKC     / (GACON*ALD*HKA)
       HR_HKA = HKC_HKA / (GACON*ALD*HKA) - HR / HKA
       HR_RTA = HKC_RTA / (GACON*ALD*HKA)
C
       UQ     = (0.5*CFA - HR**2) / (GBCON*DA)
       UQ_HKA =   -2.0*HR*HR_HKA  / (GBCON*DA)
       UQ_RTA =   -2.0*HR*HR_RTA  / (GBCON*DA)
       UQ_CFA =   0.5             / (GBCON*DA)
       UQ_DA  = -UQ/DA
       UQ_UPW = UQ_CFA*(CF2-CF1) + UQ_HKA*(HK2-HK1)
C
       UQ_T1 = (1.0-UPW)*(UQ_CFA*CF1_T1 + UQ_HKA*HK1_T1) + UQ_UPW*UPW_T1
       UQ_D1 = (1.0-UPW)*(UQ_CFA*CF1_D1 + UQ_HKA*HK1_D1) + UQ_UPW*UPW_D1
       UQ_U1 = (1.0-UPW)*(UQ_CFA*CF1_U1 + UQ_HKA*HK1_U1) + UQ_UPW*UPW_U1
       UQ_T2 =      UPW *(UQ_CFA*CF2_T2 + UQ_HKA*HK2_T2) + UQ_UPW*UPW_T2
       UQ_D2 =      UPW *(UQ_CFA*CF2_D2 + UQ_HKA*HK2_D2) + UQ_UPW*UPW_D2
       UQ_U2 =      UPW *(UQ_CFA*CF2_U2 + UQ_HKA*HK2_U2) + UQ_UPW*UPW_U2
       UQ_MS = (1.0-UPW)*(UQ_CFA*CF1_MS + UQ_HKA*HK1_MS) + UQ_UPW*UPW_MS
     &       +      UPW *(UQ_CFA*CF2_MS + UQ_HKA*HK2_MS)
       UQ_RE = (1.0-UPW)* UQ_CFA*CF1_RE
     &       +      UPW * UQ_CFA*CF2_RE
C
       UQ_T1 = UQ_T1             + 0.5*UQ_RTA*RT1_T1
       UQ_D1 = UQ_D1 + 0.5*UQ_DA
       UQ_U1 = UQ_U1             + 0.5*UQ_RTA*RT1_U1
       UQ_T2 = UQ_T2             + 0.5*UQ_RTA*RT2_T2
       UQ_D2 = UQ_D2 + 0.5*UQ_DA
       UQ_U2 = UQ_U2             + 0.5*UQ_RTA*RT2_U2
       UQ_MS = UQ_MS             + 0.5*UQ_RTA*RT1_MS
     &                           + 0.5*UQ_RTA*RT2_MS
       UQ_RE = UQ_RE             + 0.5*UQ_RTA*RT1_RE
     &                           + 0.5*UQ_RTA*RT2_RE
C
       SCC = SCCON*1.333/(1.0+USA)
       SCC_USA = -SCC/(1.0+USA)
C
       SCC_US1 = SCC_USA*0.5
       SCC_US2 = SCC_USA*0.5
C
C
       SLOG = LOG(S2/S1)
       DXI = X2 - X1
C
       REZC = SCC*(CQA - SA*ALD)*DXI
     &      - DEA*2.0*          SLOG
     &      + DEA*2.0*(UQ*DXI - ULOG)*DUXCON
C

c        if(  ! (rt2.gt.1.0e3 .and. rt1.le.1.0e3) .or.
c     &     (rt2.gt.1.0e4 .and. rt1.le.1.0e4) .or.
c     &     (rt2.gt.1.0e5 .and. rt1.le.1.0e5)        ) then
c           gga = (HKA-1.0-GCC/RTA)/HKA / sqrt(0.5*CFA)
c           write(*,4455) rta, hka, gga, cfa, cqa, sa, uq, ulog/dxi
c 4455      format(1x,f7.0, 2f9.4,f10.6,2f8.5,2f10.5)
c        endif


       Z_CFA = DEA*2.0*UQ_CFA*DXI * DUXCON
       Z_HKA = DEA*2.0*UQ_HKA*DXI * DUXCON
       Z_DA  = DEA*2.0*UQ_DA *DXI * DUXCON
       Z_SL = -DEA*2.0
       Z_UL = -DEA*2.0 * DUXCON
       Z_DXI = SCC    *(CQA - SA*ALD)     + DEA*2.0*UQ*DUXCON
       Z_USA = SCC_USA*(CQA - SA*ALD)*DXI
       Z_CQA = SCC*DXI
       Z_SA = -SCC*DXI*ALD
       Z_DEA = 2.0*((UQ*DXI - ULOG)*DUXCON - SLOG)
C
       Z_UPW = Z_CQA*(CQ2-CQ1) + Z_SA *(S2 -S1 )
     &       + Z_CFA*(CF2-CF1) + Z_HKA*(HK2-HK1)
       Z_DE1 = 0.5*Z_DEA
       Z_DE2 = 0.5*Z_DEA
       Z_US1 = 0.5*Z_USA
       Z_US2 = 0.5*Z_USA
       Z_D1  = 0.5*Z_DA
       Z_D2  = 0.5*Z_DA
       Z_U1  =                 - Z_UL/U1
       Z_U2  =                   Z_UL/U2
       Z_X1  = -Z_DXI
       Z_X2  =  Z_DXI
       Z_S1  = (1.0-UPW)*Z_SA  - Z_SL/S1
       Z_S2  =      UPW *Z_SA  + Z_SL/S2
       Z_CQ1 = (1.0-UPW)*Z_CQA
       Z_CQ2 =      UPW *Z_CQA
       Z_CF1 = (1.0-UPW)*Z_CFA
       Z_CF2 =      UPW *Z_CFA
       Z_HK1 = (1.0-UPW)*Z_HKA
       Z_HK2 =      UPW *Z_HKA
C
       VS1(1,1) = Z_S1
       VS1(1,2) =        Z_UPW*UPW_T1 + Z_DE1*DE1_T1 + Z_US1*US1_T1
       VS1(1,3) = Z_D1 + Z_UPW*UPW_D1 + Z_DE1*DE1_D1 + Z_US1*US1_D1
       VS1(1,4) = Z_U1 + Z_UPW*UPW_U1 + Z_DE1*DE1_U1 + Z_US1*US1_U1
       VS1(1,5) = Z_X1
       VS2(1,1) = Z_S2
       VS2(1,2) =        Z_UPW*UPW_T2 + Z_DE2*DE2_T2 + Z_US2*US2_T2
       VS2(1,3) = Z_D2 + Z_UPW*UPW_D2 + Z_DE2*DE2_D2 + Z_US2*US2_D2
       VS2(1,4) = Z_U2 + Z_UPW*UPW_U2 + Z_DE2*DE2_U2 + Z_US2*US2_U2
       VS2(1,5) = Z_X2
       VSM(1)   =        Z_UPW*UPW_MS + Z_DE1*DE1_MS + Z_US1*US1_MS
     &                                + Z_DE2*DE2_MS + Z_US2*US2_MS
C
       VS1(1,2) = VS1(1,2) + Z_CQ1*CQ1_T1 + Z_CF1*CF1_T1 + Z_HK1*HK1_T1
       VS1(1,3) = VS1(1,3) + Z_CQ1*CQ1_D1 + Z_CF1*CF1_D1 + Z_HK1*HK1_D1
       VS1(1,4) = VS1(1,4) + Z_CQ1*CQ1_U1 + Z_CF1*CF1_U1 + Z_HK1*HK1_U1
C
       VS2(1,2) = VS2(1,2) + Z_CQ2*CQ2_T2 + Z_CF2*CF2_T2 + Z_HK2*HK2_T2
       VS2(1,3) = VS2(1,3) + Z_CQ2*CQ2_D2 + Z_CF2*CF2_D2 + Z_HK2*HK2_D2
       VS2(1,4) = VS2(1,4) + Z_CQ2*CQ2_U2 + Z_CF2*CF2_U2 + Z_HK2*HK2_U2
C
       VSM(1)   = VSM(1)   + Z_CQ1*CQ1_MS + Z_CF1*CF1_MS + Z_HK1*HK1_MS
     &                     + Z_CQ2*CQ2_MS + Z_CF2*CF2_MS + Z_HK2*HK2_MS
       VSR(1)   =            Z_CQ1*CQ1_RE + Z_CF1*CF1_RE
     &                     + Z_CQ2*CQ2_RE + Z_CF2*CF2_RE
       VSX(1)   = 0.
       VSREZ(1) = -REZC
C
      ENDIF
C
C**** Set up momentum equation
      HA = 0.5*(H1 + H2)
      MA = 0.5*(M1 + M2)
      XA = 0.5*(X1 + X2)
      TA = 0.5*(T1 + T2)
      HWA = 0.5*(DW1/T1 + DW2/T2)
C
C---- set Cf term, using central value CFM for better accuracy in drag
      CFX     = 0.50*CFM*XA/TA  +  0.25*(CF1*X1/T1 + CF2*X2/T2)
      CFX_XA  = 0.50*CFM   /TA
      CFX_TA  = -.50*CFM*XA/TA**2
C
      CFX_X1  = 0.25*CF1   /T1     + CFX_XA*0.5
      CFX_X2  = 0.25*CF2   /T2     + CFX_XA*0.5
      CFX_T1  = -.25*CF1*X1/T1**2  + CFX_TA*0.5
      CFX_T2  = -.25*CF2*X2/T2**2  + CFX_TA*0.5
      CFX_CF1 = 0.25*    X1/T1
      CFX_CF2 = 0.25*    X2/T2
      CFX_CFM = 0.50*    XA/TA
C
      BTMP = HA + 2.0 - MA + HWA
C
      REZT  = TLOG + BTMP*ULOG - XLOG*0.5*CFX
      Z_CFX = -XLOG*0.5
      Z_HA  =  ULOG
      Z_HWA =  ULOG
      Z_MA  = -ULOG
      Z_XL  =-DDLOG * 0.5*CFX
      Z_UL  = DDLOG * BTMP
      Z_TL  = DDLOG
C
      Z_CFM = Z_CFX*CFX_CFM
      Z_CF1 = Z_CFX*CFX_CF1
      Z_CF2 = Z_CFX*CFX_CF2
C
      Z_T1 = -Z_TL/T1 + Z_CFX*CFX_T1 + Z_HWA*0.5*(-DW1/T1**2)
      Z_T2 =  Z_TL/T2 + Z_CFX*CFX_T2 + Z_HWA*0.5*(-DW2/T2**2)
      Z_X1 = -Z_XL/X1 + Z_CFX*CFX_X1
      Z_X2 =  Z_XL/X2 + Z_CFX*CFX_X2
      Z_U1 = -Z_UL/U1
      Z_U2 =  Z_UL/U2
C
      VS1(2,2) = 0.5*Z_HA*H1_T1 + Z_CFM*CFM_T1 + Z_CF1*CF1_T1 + Z_T1
      VS1(2,3) = 0.5*Z_HA*H1_D1 + Z_CFM*CFM_D1 + Z_CF1*CF1_D1
      VS1(2,4) = 0.5*Z_MA*M1_U1 + Z_CFM*CFM_U1 + Z_CF1*CF1_U1 + Z_U1
      VS1(2,5) =                                                Z_X1
      VS2(2,2) = 0.5*Z_HA*H2_T2 + Z_CFM*CFM_T2 + Z_CF2*CF2_T2 + Z_T2
      VS2(2,3) = 0.5*Z_HA*H2_D2 + Z_CFM*CFM_D2 + Z_CF2*CF2_D2
      VS2(2,4) = 0.5*Z_MA*M2_U2 + Z_CFM*CFM_U2 + Z_CF2*CF2_U2 + Z_U2
      VS2(2,5) =                                                Z_X2
C
      VSM(2)   = 0.5*Z_MA*M1_MS + Z_CFM*CFM_MS + Z_CF1*CF1_MS
     &         + 0.5*Z_MA*M2_MS                + Z_CF2*CF2_MS
      VSR(2)   =                  Z_CFM*CFM_RE + Z_CF1*CF1_RE
     &                                         + Z_CF2*CF2_RE
      VSX(2)   = 0.
      VSREZ(2) = -REZT
C
C**** Set up shape parameter equation
C
      XOT1 = X1/T1
      XOT2 = X2/T2
C
      HA  = 0.5*(H1  + H2 )
      HSA = 0.5*(HS1 + HS2)
      HCA = 0.5*(HC1 + HC2)
      HWA = 0.5*(DW1/T1 + DW2/T2)
C
      DIX = (1.0-UPW)*DI1*XOT1 + UPW*DI2*XOT2
      CFX = (1.0-UPW)*CF1*XOT1 + UPW*CF2*XOT2
      DIX_UPW = DI2*XOT2 - DI1*XOT1
      CFX_UPW = CF2*XOT2 - CF1*XOT1
C
      BTMP = 2.0*HCA/HSA + 1.0 - HA - HWA
C
      REZH  = HLOG + BTMP*ULOG + XLOG*(0.5*CFX-DIX)
      Z_CFX =  XLOG*0.5
      Z_DIX = -XLOG
      Z_HCA = 2.0*ULOG/HSA
      Z_HA  = -ULOG
      Z_HWA = -ULOG
      Z_XL  = DDLOG * (0.5*CFX-DIX)
      Z_UL  = DDLOG * BTMP
      Z_HL  = DDLOG
C
      Z_UPW = Z_CFX*CFX_UPW + Z_DIX*DIX_UPW
C
      Z_HS1 = -HCA*ULOG/HSA**2 - Z_HL/HS1
      Z_HS2 = -HCA*ULOG/HSA**2 + Z_HL/HS2
C
      Z_CF1 = (1.0-UPW)*Z_CFX*XOT1
      Z_CF2 =      UPW *Z_CFX*XOT2
      Z_DI1 = (1.0-UPW)*Z_DIX*XOT1
      Z_DI2 =      UPW *Z_DIX*XOT2
C
      Z_T1 = (1.0-UPW)*(Z_CFX*CF1 + Z_DIX*DI1)*(-XOT1/T1)
      Z_T2 =      UPW *(Z_CFX*CF2 + Z_DIX*DI2)*(-XOT2/T2)
      Z_X1 = (1.0-UPW)*(Z_CFX*CF1 + Z_DIX*DI1)/ T1        - Z_XL/X1
      Z_X2 =      UPW *(Z_CFX*CF2 + Z_DIX*DI2)/ T2        + Z_XL/X2
      Z_U1 =                                              - Z_UL/U1
      Z_U2 =                                                Z_UL/U2
C
      Z_T1 = Z_T1 + Z_HWA*0.5*(-DW1/T1**2)
      Z_T2 = Z_T2 + Z_HWA*0.5*(-DW2/T2**2)
C
      VS1(3,1) =                               Z_DI1*DI1_S1
      VS1(3,2) = Z_HS1*HS1_T1 + Z_CF1*CF1_T1 + Z_DI1*DI1_T1 + Z_T1
      VS1(3,3) = Z_HS1*HS1_D1 + Z_CF1*CF1_D1 + Z_DI1*DI1_D1
      VS1(3,4) = Z_HS1*HS1_U1 + Z_CF1*CF1_U1 + Z_DI1*DI1_U1 + Z_U1
      VS1(3,5) =                                              Z_X1
      VS2(3,1) =                               Z_DI2*DI2_S2
      VS2(3,2) = Z_HS2*HS2_T2 + Z_CF2*CF2_T2 + Z_DI2*DI2_T2 + Z_T2
      VS2(3,3) = Z_HS2*HS2_D2 + Z_CF2*CF2_D2 + Z_DI2*DI2_D2
      VS2(3,4) = Z_HS2*HS2_U2 + Z_CF2*CF2_U2 + Z_DI2*DI2_U2 + Z_U2
      VS2(3,5) =                                              Z_X2
      VSM(3)   = Z_HS1*HS1_MS + Z_CF1*CF1_MS + Z_DI1*DI1_MS
     &         + Z_HS2*HS2_MS + Z_CF2*CF2_MS + Z_DI2*DI2_MS
      VSR(3)   = Z_HS1*HS1_RE + Z_CF1*CF1_RE + Z_DI1*DI1_RE
     &         + Z_HS2*HS2_RE + Z_CF2*CF2_RE + Z_DI2*DI2_RE
C
      VS1(3,2) = VS1(3,2) + 0.5*(Z_HCA*HC1_T1+Z_HA*H1_T1) + Z_UPW*UPW_T1
      VS1(3,3) = VS1(3,3) + 0.5*(Z_HCA*HC1_D1+Z_HA*H1_D1) + Z_UPW*UPW_D1
      VS1(3,4) = VS1(3,4) + 0.5*(Z_HCA*HC1_U1           ) + Z_UPW*UPW_U1
      VS2(3,2) = VS2(3,2) + 0.5*(Z_HCA*HC2_T2+Z_HA*H2_T2) + Z_UPW*UPW_T2
      VS2(3,3) = VS2(3,3) + 0.5*(Z_HCA*HC2_D2+Z_HA*H2_D2) + Z_UPW*UPW_D2
      VS2(3,4) = VS2(3,4) + 0.5*(Z_HCA*HC2_U2           ) + Z_UPW*UPW_U2
C
      VSM(3)   = VSM(3)   + 0.5*(Z_HCA*HC1_MS           ) + Z_UPW*UPW_MS
     &                    + 0.5*(Z_HCA*HC2_MS           )
C
      VSX(3)   = 0.
      VSREZ(3) = -REZH
C
      RETURN
      END


 
      SUBROUTINE DAMPL( HK, TH, RT, AX, AX_HK, AX_TH, AX_RT )
C==============================================================
C     Amplification rate routine for envelope e^n method.
C     Reference:
C                Drela, M., Giles, M.,
C               "Viscous/Inviscid Analysis of Transonic and
C                Low Reynolds Number Airfoils",
C                AIAA Journal, Oct. 1987.
C
C     NEW VERSION.   March 1991       (latest bug fix  July 93)
C          - m(H) correlation made more accurate up to H=20
C          - for H > 5, non-similar profiles are used 
C            instead of Falkner-Skan profiles.  These 
C            non-similar profiles have smaller reverse 
C            velocities, are more representative of typical 
C            separation bubble profiles.
C--------------------------------------------------------------
C
C     input :   HK     kinematic shape parameter
C               TH     momentum thickness
C               RT     momentum-thickness Reynolds number
C
C     output:   AX     envelope spatial amplification rate
C               AX_(.) sensitivity of AX to parameter (.)
C
C
C     Usage: The log of the envelope amplitude N(x) is
C            calculated by integrating AX (= dN/dx) with
C            respect to the streamwise distance x.
C                      x
C                     /
C              N(x) = | AX(H(x),Th(x),Rth(x)) dx
C                     /
C                      0
C            The integration can be started from the leading
C            edge since AX will be returned as zero when RT
C            is below the critical Rtheta.  Transition occurs
C            when N(x) reaches Ncrit (Ncrit= 9 is "standard").
C==============================================================
      IMPLICIT REAL (A-H,M,O-Z)
ccc   DATA DGR / 0.04 /
      DATA DGR / 0.08 /
C
      HMI = 1.0/(HK - 1.0)
      HMI_HK = -HMI**2
C
C---- log10(Critical Rth) - H   correlation for Falkner-Skan profiles
      AA    = 2.492*HMI**0.43
      AA_HK =   (AA/HMI)*0.43 * HMI_HK
C
      BB    = TANH(14.0*HMI - 9.24)
      BB_HK = (1.0 - BB*BB) * 14.0 * HMI_HK
C
      GRCRIT = AA    + 0.7*(BB + 1.0)
      GRC_HK = AA_HK + 0.7* BB_HK
C
C
      GR = LOG10(RT)
      GR_RT = 1.0 / (2.3025851*RT)
C
      IF(GR .LT. GRCRIT-DGR) THEN
C
C----- no amplification for Rtheta < Rcrit
       AX    = 0.
       AX_HK = 0.
       AX_TH = 0.
       AX_RT = 0.
C
      ELSE
C
C----- Set steep cubic ramp used to turn on AX smoothly as Rtheta 
C-     exceeds Rcrit (previously, this was done discontinuously).
C-     The ramp goes between  -DGR < log10(Rtheta/Rcrit) < DGR
C
       RNORM = (GR - (GRCRIT-DGR)) / (2.0*DGR)
       RN_HK =     -  GRC_HK       / (2.0*DGR)
       RN_RT =  GR_RT              / (2.0*DGR)
C
       IF(RNORM .GE. 1.0) THEN
        RFAC    = 1.0
        RFAC_HK = 0.
        RFAC_RT = 0.
       ELSE
        RFAC    = 3.0*RNORM**2 - 2.0*RNORM**3
        RFAC_RN = 6.0*RNORM    - 6.0*RNORM**2
C
        RFAC_HK = RFAC_RN*RN_HK
        RFAC_RT = RFAC_RN*RN_RT
       ENDIF
C
C----- Amplification envelope slope correlation for Falkner-Skan
       ARG    = 3.87*HMI    - 2.52
       ARG_HK = 3.87*HMI_HK
C
       EX    = EXP(-ARG**2)
       EX_HK = EX * (-2.0*ARG*ARG_HK)
C
       DADR    = 0.028*(HK-1.0) - 0.0345*EX
       DADR_HK = 0.028          - 0.0345*EX_HK
C
C----- new m(H) correlation    1 March 91
       AF = -0.05 + 2.7*HMI -  5.5*HMI**2 + 3.0*HMI**3
       AF_HMI =     2.7     - 11.0*HMI    + 9.0*HMI**2
       AF_HK = AF_HMI*HMI_HK
C
       AX    = (AF   *DADR/TH                ) * RFAC
       AX_HK = (AF_HK*DADR/TH + AF*DADR_HK/TH) * RFAC
     &       + (AF   *DADR/TH                ) * RFAC_HK
       AX_TH = -AX/TH
       AX_RT = (AF   *DADR/TH                ) * RFAC_RT
C
      ENDIF
C
      RETURN
      END ! DAMPL


 
      SUBROUTINE DAMPL2( HK, TH, RT, AX, AX_HK, AX_TH, AX_RT )
C==============================================================
C     Amplification rate routine for modified envelope e^n method.
C     Reference: 
C                Drela, M., Giles, M.,
C               "Viscous/Inviscid Analysis of Transonic and 
C                Low Reynolds Number Airfoils", 
C                AIAA Journal, Oct. 1987.
C
C     NEWER VERSION.   Nov 1996
C          - Amplification rate changes to the Orr-Sommerfeld
C              maximum ai(H,Rt) function for H > 4 .
C          - This implicitly assumes that the frequency range
C              (around w = 0.09 Ue/theta) which experiences this 
C              maximum amplification rate contains the currently
C              most-amplified frequency.
C--------------------------------------------------------------
C
C     input :   HK     kinematic shape parameter
C               TH     momentum thickness
C               RT     momentum-thickness Reynolds number
C
C     output:   AX     envelope spatial amplification rate
C               AX_(.) sensitivity of AX to parameter (.)
C
C
C     Usage: The log of the envelope amplitude N(x) is 
C            calculated by integrating AX (= dN/dx) with 
C            respect to the streamwise distance x.
C                      x
C                     /
C              N(x) = | AX(H(x),Th(x),Rth(x)) dx
C                     /
C                      0
C            The integration can be started from the leading
C            edge since AX will be returned as zero when RT
C            is below the critical Rtheta.  Transition occurs
C            when N(x) reaches Ncrit (Ncrit= 9 is "standard").
C==============================================================
      IMPLICIT REAL (A-H,M,O-Z)
      DATA DGR / 0.08 /
      DATA HK1, HK2 / 3.5, 4.0 /
C
      HMI = 1.0/(HK - 1.0)
      HMI_HK = -HMI**2
C
C---- log10(Critical Rth) -- H   correlation for Falkner-Skan profiles
      AA    = 2.492*HMI**0.43
      AA_HK =   (AA/HMI)*0.43 * HMI_HK
C
      BB    = TANH(14.0*HMI - 9.24)
      BB_HK = (1.0 - BB*BB) * 14.0 * HMI_HK
C
      GRC = AA    + 0.7*(BB + 1.0)
      GRC_HK = AA_HK + 0.7* BB_HK
C
C
      GR = LOG10(RT)
      GR_RT = 1.0 / (2.3025851*RT)
C
      IF(GR .LT. GRC-DGR) THEN
C
C----- no amplification for Rtheta < Rcrit
       AX    = 0.
       AX_HK = 0.
       AX_TH = 0.
       AX_RT = 0.
C
      ELSE
C
C----- Set steep cubic ramp used to turn on AX smoothly as Rtheta 
C-     exceeds Rcrit (previously, this was done discontinuously).
C-     The ramp goes between  -DGR < log10(Rtheta/Rcrit) < DGR
C
       RNORM = (GR - (GRC-DGR)) / (2.0*DGR)
       RN_HK =     -  GRC_HK       / (2.0*DGR)
       RN_RT =  GR_RT              / (2.0*DGR)
C
       IF(RNORM .GE. 1.0) THEN
        RFAC    = 1.0
        RFAC_HK = 0.
        RFAC_RT = 0.
       ELSE
        RFAC    = 3.0*RNORM**2 - 2.0*RNORM**3
        RFAC_RN = 6.0*RNORM    - 6.0*RNORM**2
C
        RFAC_HK = RFAC_RN*RN_HK
        RFAC_RT = RFAC_RN*RN_RT
       ENDIF
C
C
C----- set envelope amplification rate with respect to Rtheta
C-       DADR = d(N)/d(Rtheta) = f(H)
C
       ARG    = 3.87*HMI    - 2.52
       ARG_HK = 3.87*HMI_HK
C
       EX    = EXP(-ARG**2)
       EX_HK = EX * (-2.0*ARG*ARG_HK)
C
       DADR    = 0.028*(HK-1.0) - 0.0345*EX
       DADR_HK = 0.028          - 0.0345*EX_HK
C
C
C----- set conversion factor from d/d(Rtheta) to d/dx
C-       AF = Theta d(Rtheta)/dx = f(H)
C
       BRG = -20.0*HMI
       AF = -0.05 + 2.7*HMI -  5.5*HMI**2 + 3.0*HMI**3 + 0.1*EXP(BRG)
       AF_HMI =     2.7     - 11.0*HMI    + 9.0*HMI**2 - 2.0*EXP(BRG)
       AF_HK = AF_HMI*HMI_HK
C
C
C----- set amplification rate with respect to x, 
C-     with RFAC shutting off amplification when below Rcrit
C
       AX    = (AF   *DADR/TH                ) * RFAC
       AX_HK = (AF_HK*DADR/TH + AF*DADR_HK/TH) * RFAC
     &       + (AF   *DADR/TH                ) * RFAC_HK
       AX_TH = -AX/TH
       AX_RT = (AF   *DADR/TH                ) * RFAC_RT
C
      ENDIF
C
      IF(HK .LT. HK1) RETURN
C
C---- non-envelope max-amplification correction for separated profiles
C
      HNORM = (HK - HK1) / (HK2 - HK1)
      HN_HK =       1.0  / (HK2 - HK1)
C
C---- set blending fraction HFAC = 0..1 over HK1 < HK < HK2
      IF(HNORM .GE. 1.0) THEN
       HFAC = 1.0
       HF_HK = 0.
      ELSE
       HFAC  =  3.0*HNORM**2 - 2.0*HNORM**3
       HF_HK = (6.0*HNORM    - 6.0*HNORM**2)*HN_HK
      ENDIF
C
C---- "normal" envelope amplification rate AX1
      AX1    = AX
      AX1_HK = AX_HK
      AX1_TH = AX_TH
      AX1_RT = AX_RT
C
C---- set modified amplification rate AX2
      GR0 = 0.30 + 0.35 * EXP(-0.15*(HK-5.0))
      GR0_HK =   - 0.35 * EXP(-0.15*(HK-5.0)) * 0.15
C
      TNR = TANH(1.2*(GR - GR0))
      TNR_RT =  (1.0 - TNR**2)*1.2*GR_RT
      TNR_HK = -(1.0 - TNR**2)*1.2*GR0_HK
C
      AX2    = (0.086*TNR    -     0.25/(HK-1.0)**1.5) / TH
      AX2_HK = (0.086*TNR_HK + 1.5*0.25/(HK-1.0)**2.5) / TH
      AX2_RT = (0.086*TNR_RT                         ) / TH
      AX2_TH = -AX2/TH
C
      IF(AX2 .LT. 0.0) THEN
       AX2    = 0.0
       AX2_HK = 0.
       AX2_RT = 0.
       AX2_TH = 0.
      ENDIF
C
C---- blend the two amplification rates
      AX    = HFAC*AX2    + (1.0 - HFAC)*AX1
      AX_HK = HFAC*AX2_HK + (1.0 - HFAC)*AX1_HK + HF_HK*(AX2-AX1)
      AX_RT = HFAC*AX2_RT + (1.0 - HFAC)*AX1_RT
      AX_TH = HFAC*AX2_TH + (1.0 - HFAC)*AX1_TH
C
      RETURN
      END ! DAMPL2

 
 
      SUBROUTINE HKIN( H, MSQ, HK, HK_H, HK_MSQ )
      REAL MSQ
C
C---- calculate kinematic shape parameter (assuming air)
C     (from Whitfield )
      HK     =    (H - 0.29*MSQ)/(1.0 + 0.113*MSQ)
      HK_H   =     1.0          /(1.0 + 0.113*MSQ)
      HK_MSQ = (-.29 - 0.113*HK)/(1.0 + 0.113*MSQ)
C
      RETURN
      END
 


      SUBROUTINE DIL( HK, RT, DI, DI_HK, DI_RT )
C
C---- Laminar dissipation function  ( 2 CD/H* )     (from Falkner-Skan)
      IF(HK.LT.4.0) THEN
       DI    = ( 0.00205  *  (4.0-HK)**5.5 + 0.207 ) / RT
       DI_HK = ( -.00205*5.5*(4.0-HK)**4.5         ) / RT
      ELSE
       HKB = HK - 4.0
       DEN = 1.0 + 0.02*HKB**2
       DI    = ( -.0016  *  HKB**2  /DEN   + 0.207             ) / RT
       DI_HK = ( -.0016*2.0*HKB*(1.0/DEN - 0.02*HKB**2/DEN**2) ) / RT
      ENDIF
      DI_RT = -DI/RT
C
      RETURN
      END


      SUBROUTINE DILW( HK, RT, DI, DI_HK, DI_RT )
      REAL MSQ
C
      MSQ = 0.
      CALL HSL( HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ )
C
C---- Laminar wake dissipation function  ( 2 CD/H* )
      RCD    =  1.10 * (1.0 - 1.0/HK)**2  / HK
      RCD_HK = -1.10 * (1.0 - 1.0/HK)*2.0 / HK**3
     &       - RCD/HK
C
      DI    = 2.0*RCD   /(HS*RT)
      DI_HK = 2.0*RCD_HK/(HS*RT) - (DI/HS)*HS_HK
      DI_RT = -DI/RT             - (DI/HS)*HS_RT
C
      RETURN
      END


      SUBROUTINE HSL( HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ )
      REAL MSQ
C
C---- Laminar HS correlation
      IF(HK.LT.4.35) THEN
       TMP = HK - 4.35
       HS    = 0.0111*TMP**2/(HK+1.0)
     &       - 0.0278*TMP**3/(HK+1.0)  + 1.528
     &       - 0.0002*(TMP*HK)**2
       HS_HK = 0.0111*(2.0*TMP    - TMP**2/(HK+1.0))/(HK+1.0)
     &       - 0.0278*(3.0*TMP**2 - TMP**3/(HK+1.0))/(HK+1.0)
     &       - 0.0002*2.0*TMP*HK * (TMP + HK)
      ELSE
       HS    = 0.015*    (HK-4.35)**2/HK + 1.528
       HS_HK = 0.015*2.0*(HK-4.35)   /HK
     &       - 0.015*    (HK-4.35)**2/HK**2
      ENDIF
C
      HS_RT  = 0.
      HS_MSQ = 0.
C
      RETURN
      END


      SUBROUTINE CFL( HK, RT, MSQ, CF, CF_HK, CF_RT, CF_MSQ )
      REAL MSQ
C
C---- Laminar skin friction function  ( Cf )    ( from Falkner-Skan )
      IF(HK.LT.5.5) THEN
       TMP = (5.5-HK)**3 / (HK+1.0)
       CF    = ( 0.0727*TMP                      - 0.07       )/RT
       CF_HK = ( -.0727*TMP*3.0/(5.5-HK) - 0.0727*TMP/(HK+1.0))/RT
      ELSE
       TMP = 1.0 - 1.0/(HK-4.5)
       CF    = ( 0.015*TMP**2      - 0.07  ) / RT
       CF_HK = ( 0.015*TMP*2.0/(HK-4.5)**2 ) / RT
      ENDIF
      CF_RT = -CF/RT
      CF_MSQ = 0.0
C
      RETURN
      END



      SUBROUTINE DIT( HS, US, CF, ST, DI, DI_HS, DI_US, DI_CF, DI_ST )
C
C---- Turbulent dissipation function  ( 2 CD/H* )
      DI    =  ( 0.5*CF*US + ST*ST*(1.0-US) ) * 2.0/HS
      DI_HS = -( 0.5*CF*US + ST*ST*(1.0-US) ) * 2.0/HS**2
      DI_US =  ( 0.5*CF    - ST*ST          ) * 2.0/HS
      DI_CF =  ( 0.5   *US                  ) * 2.0/HS
      DI_ST =  (            2.0*ST*(1.0-US) ) * 2.0/HS
C
      RETURN
      END


      SUBROUTINE HST( HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ )
      IMPLICIT REAL (A-H,M,O-Z)
C
C---- Turbulent HS correlation
C
      DATA HSMIN, DHSINF / 1.500, 0.015 /
C
C---- ###  12/4/94
C---- limited Rtheta dependence for Rtheta < 200
C
C
      IF(RT.GT.400.0) THEN
       HO    = 3.0 + 400.0/RT
       HO_RT =     - 400.0/RT**2
      ELSE
       HO    = 4.0
       HO_RT = 0.
      ENDIF
C
      IF(RT.GT.200.0) THEN
       RTZ    = RT
       RTZ_RT = 1.
      ELSE
       RTZ    = 200.0
       RTZ_RT = 0.
      ENDIF
C
      IF(HK.LT.HO) THEN
C----- attached branch
C=======================================================
C----- old correlation
C-     (from Swafford profiles)
c       SRT = SQRT(RT)
c       HEX = (HO-HK)**1.6
c       RTMP = 0.165 - 1.6/SRT
c       HS    = HSMIN + 4.0/RT + RTMP*HEX/HK
c       HS_HK = RTMP*HEX/HK*(-1.6/(HO-HK) - 1.0/HK)
c       HS_RT = -4.0/RT**2 + HEX/HK*0.8/SRT/RT
c     &             + RTMP*HEX/HK*1.6/(HO-HK)*HO_RT
C=======================================================
C----- new correlation  29 Nov 91
C-     (from  arctan(y+) + Schlichting  profiles)
       HR    = ( HO - HK)/(HO-1.0)
       HR_HK =      - 1.0/(HO-1.0)
       HR_RT = (1.0 - HR)/(HO-1.0) * HO_RT
       HS    = (2.0-HSMIN-4.0/RTZ)*HR**2  * 1.5/(HK+0.5) + HSMIN
     &       + 4.0/RTZ
       HS_HK =-(2.0-HSMIN-4.0/RTZ)*HR**2  * 1.5/(HK+0.5)**2
     &       + (2.0-HSMIN-4.0/RTZ)*HR*2.0 * 1.5/(HK+0.5) * HR_HK
       HS_RT = (2.0-HSMIN-4.0/RTZ)*HR*2.0 * 1.5/(HK+0.5) * HR_RT
     &       + (HR**2 * 1.5/(HK+0.5) - 1.0)*4.0/RTZ**2 * RTZ_RT
C
      ELSE
C
C----- separated branch
       GRT = LOG(RTZ)
       HDIF = HK - HO 
       RTMP = HK - HO + 4.0/GRT
       HTMP    = 0.007*GRT/RTMP**2 + DHSINF/HK
       HTMP_HK = -.014*GRT/RTMP**3 - DHSINF/HK**2
       HTMP_RT = -.014*GRT/RTMP**3 * (-HO_RT - 4.0/GRT**2/RTZ * RTZ_RT)
     &         + 0.007    /RTMP**2 / RTZ * RTZ_RT
       HS    = HDIF**2 * HTMP + HSMIN + 4.0/RTZ
       HS_HK = HDIF*2.0* HTMP
     &       + HDIF**2 * HTMP_HK
       HS_RT = HDIF**2 * HTMP_RT      - 4.0/RTZ**2 * RTZ_RT
     &       + HDIF*2.0* HTMP * (-HO_RT)
C
      ENDIF
C
C---- fudge HS slightly to make sure   HS -> 2   as   HK -> 1
C-    (unnecessary with new correlation)
c      HTF    = 0.485/9.0 * (HK-4.0)**2/HK  +  1.515
c      HTF_HK = 0.485/9.0 * (1.0-16.0/HK**2)
c      ARG = MAX( 10.0*(1.0 - HK) , -15.0 )
c      HXX = EXP(ARG)
c      HXX_HK = -10.0*HXX
cC
c      HS_HK  = (1.0-HXX)*HS_HK  +  HXX*HTF_HK
c     &       + (        -HS     +      HTF    )*HXX_HK
c      HS_RT  = (1.0-HXX)*HS_RT
c      HS     = (1.0-HXX)*HS     +  HXX*HTF
C
C---- Whitfield's minor additional compressibility correction
      FM = 1.0 + 0.014*MSQ
      HS     = ( HS + 0.028*MSQ ) / FM
      HS_HK  = ( HS_HK          ) / FM
      HS_RT  = ( HS_RT          ) / FM
      HS_MSQ = 0.028/FM  -  0.014*HS/FM
C
      RETURN
      END
 
 
 
      SUBROUTINE CFT( HK, RT, MSQ, CF, CF_HK, CF_RT, CF_MSQ )
      IMPLICIT REAL (A-H,M,O-Z)
      INCLUDE 'BLPAR.INC'
C
      DATA GAM /1.4/
C
C---- Turbulent skin friction function  ( Cf )    (Coles)
      GM1 = GAM - 1.0
      FC = SQRT(1.0 + 0.5*GM1*MSQ)
      GRT = LOG(RT/FC)
      GRT = MAX(GRT,3.0)
C
      GEX = -1.74 - 0.31*HK
C
      ARG = -1.33*HK
      ARG = MAX(-20.0, ARG )
C
      THK = TANH(4.0 - HK/0.875)
C
      CFO =  CFFAC * 0.3*EXP(ARG) * (GRT/2.3026)**GEX
      CF     = ( CFO  +  1.1E-4*(THK-1.0) ) / FC
      CF_HK  = (-1.33*CFO - 0.31*LOG(GRT/2.3026)*CFO
     &         - 1.1E-4*(1.0-THK**2) / 0.875    ) / FC
      CF_RT  = GEX*CFO/(FC*GRT) / RT
      CF_MSQ = GEX*CFO/(FC*GRT) * (-0.25*GM1/FC**2) - 0.25*GM1*CF/FC**2
C
      RETURN
      END ! CFT


 
      SUBROUTINE HCT( HK, MSQ, HC, HC_HK, HC_MSQ )
      REAL MSQ
C
C---- density shape parameter    (from Whitfield)
      HC     = MSQ * (0.064/(HK-0.8) + 0.251)
      HC_HK  = MSQ * (-.064/(HK-0.8)**2     )
      HC_MSQ =        0.064/(HK-0.8) + 0.251
C
      RETURN
      END