aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/math/fixed/fixed.go
diff options
context:
space:
mode:
authorDimitri Sokolyuk <demon@dim13.org>2018-09-27 20:03:23 +0200
committerDimitri Sokolyuk <demon@dim13.org>2018-09-27 20:03:23 +0200
commit14bb08c1df8db9ec6c8a05520d4eee67971235d9 (patch)
treefc820e59c26ed4c5e87e65737909b47959f0faa5 /vendor/golang.org/x/image/math/fixed/fixed.go
parent54eb169e8fc9bc0357139e7c259e977b184f8fbb (diff)
mod tidy
Diffstat (limited to 'vendor/golang.org/x/image/math/fixed/fixed.go')
-rw-r--r--vendor/golang.org/x/image/math/fixed/fixed.go410
1 files changed, 0 insertions, 410 deletions
diff --git a/vendor/golang.org/x/image/math/fixed/fixed.go b/vendor/golang.org/x/image/math/fixed/fixed.go
deleted file mode 100644
index 3d91663..0000000
--- a/vendor/golang.org/x/image/math/fixed/fixed.go
+++ /dev/null
@@ -1,410 +0,0 @@
-// Copyright 2015 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package fixed implements fixed-point integer types.
-package fixed // import "golang.org/x/image/math/fixed"
-
-import (
- "fmt"
-)
-
-// TODO: implement fmt.Formatter for %f and %g.
-
-// I returns the integer value i as an Int26_6.
-//
-// For example, passing the integer value 2 yields Int26_6(128).
-func I(i int) Int26_6 {
- return Int26_6(i << 6)
-}
-
-// Int26_6 is a signed 26.6 fixed-point number.
-//
-// The integer part ranges from -33554432 to 33554431, inclusive. The
-// fractional part has 6 bits of precision.
-//
-// For example, the number one-and-a-quarter is Int26_6(1<<6 + 1<<4).
-type Int26_6 int32
-
-// String returns a human-readable representation of a 26.6 fixed-point number.
-//
-// For example, the number one-and-a-quarter becomes "1:16".
-func (x Int26_6) String() string {
- const shift, mask = 6, 1<<6 - 1
- if x >= 0 {
- return fmt.Sprintf("%d:%02d", int32(x>>shift), int32(x&mask))
- }
- x = -x
- if x >= 0 {
- return fmt.Sprintf("-%d:%02d", int32(x>>shift), int32(x&mask))
- }
- return "-33554432:00" // The minimum value is -(1<<25).
-}
-
-// Floor returns the greatest integer value less than or equal to x.
-//
-// Its return type is int, not Int26_6.
-func (x Int26_6) Floor() int { return int((x + 0x00) >> 6) }
-
-// Round returns the nearest integer value to x. Ties are rounded up.
-//
-// Its return type is int, not Int26_6.
-func (x Int26_6) Round() int { return int((x + 0x20) >> 6) }
-
-// Ceil returns the least integer value greater than or equal to x.
-//
-// Its return type is int, not Int26_6.
-func (x Int26_6) Ceil() int { return int((x + 0x3f) >> 6) }
-
-// Mul returns x*y in 26.6 fixed-point arithmetic.
-func (x Int26_6) Mul(y Int26_6) Int26_6 {
- return Int26_6((int64(x)*int64(y) + 1<<5) >> 6)
-}
-
-// Int52_12 is a signed 52.12 fixed-point number.
-//
-// The integer part ranges from -2251799813685248 to 2251799813685247,
-// inclusive. The fractional part has 12 bits of precision.
-//
-// For example, the number one-and-a-quarter is Int52_12(1<<12 + 1<<10).
-type Int52_12 int64
-
-// String returns a human-readable representation of a 52.12 fixed-point
-// number.
-//
-// For example, the number one-and-a-quarter becomes "1:1024".
-func (x Int52_12) String() string {
- const shift, mask = 12, 1<<12 - 1
- if x >= 0 {
- return fmt.Sprintf("%d:%04d", int64(x>>shift), int64(x&mask))
- }
- x = -x
- if x >= 0 {
- return fmt.Sprintf("-%d:%04d", int64(x>>shift), int64(x&mask))
- }
- return "-2251799813685248:0000" // The minimum value is -(1<<51).
-}
-
-// Floor returns the greatest integer value less than or equal to x.
-//
-// Its return type is int, not Int52_12.
-func (x Int52_12) Floor() int { return int((x + 0x000) >> 12) }
-
-// Round returns the nearest integer value to x. Ties are rounded up.
-//
-// Its return type is int, not Int52_12.
-func (x Int52_12) Round() int { return int((x + 0x800) >> 12) }
-
-// Ceil returns the least integer value greater than or equal to x.
-//
-// Its return type is int, not Int52_12.
-func (x Int52_12) Ceil() int { return int((x + 0xfff) >> 12) }
-
-// Mul returns x*y in 52.12 fixed-point arithmetic.
-func (x Int52_12) Mul(y Int52_12) Int52_12 {
- const M, N = 52, 12
- lo, hi := muli64(int64(x), int64(y))
- ret := Int52_12(hi<<M | lo>>N)
- ret += Int52_12((lo >> (N - 1)) & 1) // Round to nearest, instead of rounding down.
- return ret
-}
-
-// muli64 multiplies two int64 values, returning the 128-bit signed integer
-// result as two uint64 values.
-//
-// This implementation is similar to $GOROOT/src/runtime/softfloat64.go's mullu
-// function, which is in turn adapted from Hacker's Delight.
-func muli64(u, v int64) (lo, hi uint64) {
- const (
- s = 32
- mask = 1<<s - 1
- )
-
- u1 := uint64(u >> s)
- u0 := uint64(u & mask)
- v1 := uint64(v >> s)
- v0 := uint64(v & mask)
-
- w0 := u0 * v0
- t := u1*v0 + w0>>s
- w1 := t & mask
- w2 := uint64(int64(t) >> s)
- w1 += u0 * v1
- return uint64(u) * uint64(v), u1*v1 + w2 + uint64(int64(w1)>>s)
-}
-
-// P returns the integer values x and y as a Point26_6.
-//
-// For example, passing the integer values (2, -3) yields Point26_6{128, -192}.
-func P(x, y int) Point26_6 {
- return Point26_6{Int26_6(x << 6), Int26_6(y << 6)}
-}
-
-// Point26_6 is a 26.6 fixed-point coordinate pair.
-//
-// It is analogous to the image.Point type in the standard library.
-type Point26_6 struct {
- X, Y Int26_6
-}
-
-// Add returns the vector p+q.
-func (p Point26_6) Add(q Point26_6) Point26_6 {
- return Point26_6{p.X + q.X, p.Y + q.Y}
-}
-
-// Sub returns the vector p-q.
-func (p Point26_6) Sub(q Point26_6) Point26_6 {
- return Point26_6{p.X - q.X, p.Y - q.Y}
-}
-
-// Mul returns the vector p*k.
-func (p Point26_6) Mul(k Int26_6) Point26_6 {
- return Point26_6{p.X * k / 64, p.Y * k / 64}
-}
-
-// Div returns the vector p/k.
-func (p Point26_6) Div(k Int26_6) Point26_6 {
- return Point26_6{p.X * 64 / k, p.Y * 64 / k}
-}
-
-// In returns whether p is in r.
-func (p Point26_6) In(r Rectangle26_6) bool {
- return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y
-}
-
-// Point52_12 is a 52.12 fixed-point coordinate pair.
-//
-// It is analogous to the image.Point type in the standard library.
-type Point52_12 struct {
- X, Y Int52_12
-}
-
-// Add returns the vector p+q.
-func (p Point52_12) Add(q Point52_12) Point52_12 {
- return Point52_12{p.X + q.X, p.Y + q.Y}
-}
-
-// Sub returns the vector p-q.
-func (p Point52_12) Sub(q Point52_12) Point52_12 {
- return Point52_12{p.X - q.X, p.Y - q.Y}
-}
-
-// Mul returns the vector p*k.
-func (p Point52_12) Mul(k Int52_12) Point52_12 {
- return Point52_12{p.X * k / 4096, p.Y * k / 4096}
-}
-
-// Div returns the vector p/k.
-func (p Point52_12) Div(k Int52_12) Point52_12 {
- return Point52_12{p.X * 4096 / k, p.Y * 4096 / k}
-}
-
-// In returns whether p is in r.
-func (p Point52_12) In(r Rectangle52_12) bool {
- return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y
-}
-
-// R returns the integer values minX, minY, maxX, maxY as a Rectangle26_6.
-//
-// For example, passing the integer values (0, 1, 2, 3) yields
-// Rectangle26_6{Point26_6{0, 64}, Point26_6{128, 192}}.
-//
-// Like the image.Rect function in the standard library, the returned rectangle
-// has minimum and maximum coordinates swapped if necessary so that it is
-// well-formed.
-func R(minX, minY, maxX, maxY int) Rectangle26_6 {
- if minX > maxX {
- minX, maxX = maxX, minX
- }
- if minY > maxY {
- minY, maxY = maxY, minY
- }
- return Rectangle26_6{
- Point26_6{
- Int26_6(minX << 6),
- Int26_6(minY << 6),
- },
- Point26_6{
- Int26_6(maxX << 6),
- Int26_6(maxY << 6),
- },
- }
-}
-
-// Rectangle26_6 is a 26.6 fixed-point coordinate rectangle. The Min bound is
-// inclusive and the Max bound is exclusive. It is well-formed if Min.X <=
-// Max.X and likewise for Y.
-//
-// It is analogous to the image.Rectangle type in the standard library.
-type Rectangle26_6 struct {
- Min, Max Point26_6
-}
-
-// Add returns the rectangle r translated by p.
-func (r Rectangle26_6) Add(p Point26_6) Rectangle26_6 {
- return Rectangle26_6{
- Point26_6{r.Min.X + p.X, r.Min.Y + p.Y},
- Point26_6{r.Max.X + p.X, r.Max.Y + p.Y},
- }
-}
-
-// Sub returns the rectangle r translated by -p.
-func (r Rectangle26_6) Sub(p Point26_6) Rectangle26_6 {
- return Rectangle26_6{
- Point26_6{r.Min.X - p.X, r.Min.Y - p.Y},
- Point26_6{r.Max.X - p.X, r.Max.Y - p.Y},
- }
-}
-
-// Intersect returns the largest rectangle contained by both r and s. If the
-// two rectangles do not overlap then the zero rectangle will be returned.
-func (r Rectangle26_6) Intersect(s Rectangle26_6) Rectangle26_6 {
- if r.Min.X < s.Min.X {
- r.Min.X = s.Min.X
- }
- if r.Min.Y < s.Min.Y {
- r.Min.Y = s.Min.Y
- }
- if r.Max.X > s.Max.X {
- r.Max.X = s.Max.X
- }
- if r.Max.Y > s.Max.Y {
- r.Max.Y = s.Max.Y
- }
- // Letting r0 and s0 be the values of r and s at the time that the method
- // is called, this next line is equivalent to:
- //
- // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc }
- if r.Empty() {
- return Rectangle26_6{}
- }
- return r
-}
-
-// Union returns the smallest rectangle that contains both r and s.
-func (r Rectangle26_6) Union(s Rectangle26_6) Rectangle26_6 {
- if r.Empty() {
- return s
- }
- if s.Empty() {
- return r
- }
- if r.Min.X > s.Min.X {
- r.Min.X = s.Min.X
- }
- if r.Min.Y > s.Min.Y {
- r.Min.Y = s.Min.Y
- }
- if r.Max.X < s.Max.X {
- r.Max.X = s.Max.X
- }
- if r.Max.Y < s.Max.Y {
- r.Max.Y = s.Max.Y
- }
- return r
-}
-
-// Empty returns whether the rectangle contains no points.
-func (r Rectangle26_6) Empty() bool {
- return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
-}
-
-// In returns whether every point in r is in s.
-func (r Rectangle26_6) In(s Rectangle26_6) bool {
- if r.Empty() {
- return true
- }
- // Note that r.Max is an exclusive bound for r, so that r.In(s)
- // does not require that r.Max.In(s).
- return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X &&
- s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y
-}
-
-// Rectangle52_12 is a 52.12 fixed-point coordinate rectangle. The Min bound is
-// inclusive and the Max bound is exclusive. It is well-formed if Min.X <=
-// Max.X and likewise for Y.
-//
-// It is analogous to the image.Rectangle type in the standard library.
-type Rectangle52_12 struct {
- Min, Max Point52_12
-}
-
-// Add returns the rectangle r translated by p.
-func (r Rectangle52_12) Add(p Point52_12) Rectangle52_12 {
- return Rectangle52_12{
- Point52_12{r.Min.X + p.X, r.Min.Y + p.Y},
- Point52_12{r.Max.X + p.X, r.Max.Y + p.Y},
- }
-}
-
-// Sub returns the rectangle r translated by -p.
-func (r Rectangle52_12) Sub(p Point52_12) Rectangle52_12 {
- return Rectangle52_12{
- Point52_12{r.Min.X - p.X, r.Min.Y - p.Y},
- Point52_12{r.Max.X - p.X, r.Max.Y - p.Y},
- }
-}
-
-// Intersect returns the largest rectangle contained by both r and s. If the
-// two rectangles do not overlap then the zero rectangle will be returned.
-func (r Rectangle52_12) Intersect(s Rectangle52_12) Rectangle52_12 {
- if r.Min.X < s.Min.X {
- r.Min.X = s.Min.X
- }
- if r.Min.Y < s.Min.Y {
- r.Min.Y = s.Min.Y
- }
- if r.Max.X > s.Max.X {
- r.Max.X = s.Max.X
- }
- if r.Max.Y > s.Max.Y {
- r.Max.Y = s.Max.Y
- }
- // Letting r0 and s0 be the values of r and s at the time that the method
- // is called, this next line is equivalent to:
- //
- // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc }
- if r.Empty() {
- return Rectangle52_12{}
- }
- return r
-}
-
-// Union returns the smallest rectangle that contains both r and s.
-func (r Rectangle52_12) Union(s Rectangle52_12) Rectangle52_12 {
- if r.Empty() {
- return s
- }
- if s.Empty() {
- return r
- }
- if r.Min.X > s.Min.X {
- r.Min.X = s.Min.X
- }
- if r.Min.Y > s.Min.Y {
- r.Min.Y = s.Min.Y
- }
- if r.Max.X < s.Max.X {
- r.Max.X = s.Max.X
- }
- if r.Max.Y < s.Max.Y {
- r.Max.Y = s.Max.Y
- }
- return r
-}
-
-// Empty returns whether the rectangle contains no points.
-func (r Rectangle52_12) Empty() bool {
- return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
-}
-
-// In returns whether every point in r is in s.
-func (r Rectangle52_12) In(s Rectangle52_12) bool {
- if r.Empty() {
- return true
- }
- // Note that r.Max is an exclusive bound for r, so that r.In(s)
- // does not require that r.Max.In(s).
- return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X &&
- s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y
-}